e adelean

Billion vector baby!

HAYSTACK

Amine Gani

Roudy Khoury
2025-04-23

#HaystackConf
(@EPALETY

Who are we?

Q_ Adelean

Experts in search technologies

Integrators of Elasticsearch,
OpenSearch and Solr

Consulting and Training providers

Developers of a2 E-Commerce and
Enterprise Search solution

Developers of all.site - your
Collaborative Search Engine

H AYSTACK 2025-04-23 #HaystackConf @a2lean s Qagmem!poewémq

A Bit of Context:
Lexical Search vs Semantic Search

H AYSTACK 2025-04-23 #HaystackConf @a2lean & grzg meAN!FgméA!:!

The two lazy dogs were slower than the less

Lexical Search o ot i o

html_strip The two lazy dogs were slower than the less lazy dog,
Char Filter

e Keyword based

e Limited context
’ o 4 tandard dogss
e Requires advanced configuration: -- e

o Stemming
o Synonyms
o Lemmatization

e Low cost

lowercase
Token Filter

stop
Token Filter

snowball
Token Filter

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & Qagmem!p%%g

Semantic search

Images

Vector Nearest neighbor Vector
representation representation

[eee] \/ o]

Documents [o] / Query
Dense vectors
Transform into Transform into m
embedding embedding
Audio
: J Results
oy m—

https://www.elastic.co/fr/what-is/vector-search

H AYSTACK 2025-04-23 #HaystackConf @a2lean e ?delean

https://www.elastic.co/fr/what-is/vector-search

Hybrid search

Best of both worlds Hybrid Search
e Sparse vector for fast recall
Sparse Search

Then rerank using dense similarity

1. Get top 100 docs with TF-IDF, BM25...
2. Compute similarity with dense vectors
(cosine, dot product...)

Embedding
Model
3. Rerank results

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & grzg meAN!F%QA!:!

Semantic search: in practice

Sparse/Dense type
Semantic Text \ / Externally deployed

Locally and externally

deployed mode Azure, OpenAl, HuggingFace etc...

[Upload Model /w Eland]

[Create Inference API] i Create Inference API
Model Management
API

[Define index mapping] l 7 ! Define index mapping

A A

[Create Inference API] [

Y

()

Define index mapping v

(. J
v _] 8 Inference processor

Semantic query i
for search nference processor
¥ P v

.
[Sparse vector or knn | Sparse vector or knn
P for search
for search

H AYSTACK 2025-04-23 #HaystackConf @a2lean s Qagmem!poewémq

- In this presentation, we'll mainly focus
on dense vectors

H AYSTACK 2025-04-23 #HaystackConf @a2lean & grzg meAN!FgméA!:!

Vectorization in a three-dimensional vector

Animal Size | Friendliness | Intelligence
Cat 0.25 0.85 0.80
Dog 0.30 0.90 0.80
friendliness
Elephant | 0.90 0.70 0.60
intelligence
Dolphin 0.60 0.95 0.85
Parrot 0.15 0.80 0.75

https://www.adelean.com/en/blog/20240131 vectors sparse and dense/

H AYSTACK 2025-04-23 #HaystackConf QEVALER e ad eleaD

https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/

Vectorization in a three-dimensional vector

Animal Size | Friendliness | Intelligence Dolphin
@ DogCat
;gC. Parrot
Cat 0.25 0.85 0.80 ®
Ele|:ant
Dog 0.30 0.90 0.80
Elephant | 0.90 0.70 0.60 B
8 0
Dolphin 0.60 0.95 0.85
5
05 %
Parrot 0.15 0.80 0.75 %

08

0.6
0.4
70
0

Taille

https://www.adelean.com/en/blog/20240131 vectors sparse and dense/

H&YSTACK 2025-04-23 #HaystackConf @EPAEENR adelean

&P EXTRACT TRANSFORM SEARCH

https://www.adelean.com/en/blog/20240131_vectors_sparse_and_dense/

Model Size
Rank A Model (Million
Parameters)

Embedding
Dimensions

eb-mistral -7b-instruct 7111 32768
ebS-mistral -7b-instruct 7111 32768

SGPT-5.8B-weightedmean-nli-bi

sgpt-bloom-7bl-msmarco 7068 2048

5874 2048

bge-multilingual -gemma2 9242 8192

gte-Qwen2-7B-instruct 7613 131072

sentence_croissant_alpha_v0.4 1280] 2048

sentence_croissant_alpha_v0.:2

entence_croissant_alpha_v0.2

HAYSTACK

Number of vectors

vectors
fields chunks

The number of vectors

documents ! :
. . 0.1]0.9]0.5|...|0.4 .]
: : { can grow rapidly:
index A i i 0.1]0.9|0.5]...|0.4
B = e L ; e Chunking strategy
' | 0.1]0.9]0.5]...|0.4 e Vectorizing multiple

' fields
. - e Using multiple
B models

What if you need to
handle 1 billion vectors?

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] s QRQEN!F%QAQ

Element type

Defined at index creation time "vector”: {
— “type”: "dense_vector”,
This choice has a huge impact on memory "element_type”: "byte”,

“dims”: 1024,
“index”: true,
“similarity”: "cosine”,

and storage

“index_options”: {

. - “type”: "hnsw”,
The available options are: “m: 16
. N4 . ' “ef_construction”: 100
e float: single-precision floating point }
numbers - high precision, use more space }

e byte: 8-bit integers
e Dbit: binary vectors

The default value is float.

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & gag mem!;%%g

Index options type

e The type of algorithm to use
Some of the available options are:

~e hnsw: Hierarchical Navigable Small
World — approximate nearest
neighbor (aNN)

e flat: brute-force kNN search over

all vectors -> not scalable at billion
vector level

HAYSTACK 2025-04-23

“vector”: {
“type”: "dense_vector”,
“element_type”: "byte",
“dims”: 1024,
“index”: true,
“similarity”: "cosine”,

“index_options”: {
“type”: "hnsw",
"mEs 16,
"ef_construction”: 106
}
}

#HaystackConf (QEVALEE]R s gag mem!;%%g

Flat indexing - KNN

e Simplest form of indexing
e Brute-force method: all vectors
must be scanned to compute

similarity.
+ o |tdoes not scale well with large

tlaaes Find the top k most
ANN methods like HNSW are often similar vectors compared
preferred for production. to our query.

H AYSTACK 2025-04-23 #HaystackConf @a2lean s QRQEN!SMQA!;!

Navigable Small World

| Step 1 !
@ Begin the search from a
‘ random starting point, lke 2.

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E]

Navigable Small World

| Step 1
@ Begin the search from a
random starting point, like 2

=== r\\@ , _J

Stops searching too soon, missing better ‘
results (Early Stopping) > ’

e

|su,s}

Halt when no neighbor is closer

to the query than the current
ode.
At each step, evaluate connected neighbors l nece

and move to the one closest to the query.

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E]

Sklp List O(LOG n)

e Askip listis a data structure that allows Level 3: A
fast search, insertion, and deletion Level 2: A-—->C -—-—->0G

Level :A>B->C->D->E->F->G

e Like a balanced tree, but built on top of
linked lists.
e Bottom layer = normal sorted linked list.
e |t uses multiple levels of linked lists to
"skip over" elements, speeding up

e Each higher level skips over more elements.
operations.

e Top level has very few nodes, just enough to
make fast jumps.

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] s QRQEN!SMQAQ

Skip List

L1 4 |30 > NIL
S 3 |30 > 50 > NIL
T‘ 2 (30 > 50 > 70 > NIL
s|1 |30—>40—>{50 —>160 —>70—>90 —>{ NIL

H AYSTACK 2025-04-23 #HaystackConf @a2lean e ad elear)

HNSW - Hierarchical Navigable Small World

Based on the mechanics of probability skip
lists and Navigable Small World (NSW)
graphs.

Approximate search is faster but less
accurate.

A few key parameters:

e m: the number of connections between 4
each node in the graph at a given layer @

e ef _construction: the size of the ©
candidate list during graph
construction

OOO

Query vector

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] & g}zg m@m!;gwéAg

Measuring distances

[0.52,5.12, 9.31...]
300 DIMENSION VECTOR
REPRESENTATION

e Cosine Similarity is widely e
used and preferred for o |=2 @ crauwne’
semantic search (texts, ours @ ¢ ® @
queries...)

e FEuclideanis common in
feature rich vectors

e Dot Productis also used when
vectors are not.-normalized
and we want to take into
account the length of the
vectors

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & Qag%!p%%g

Euclidean distance

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & gag mem!;%%g

Cosine similarity

Cosine Similarity

Similar Unrelated Opposite

A-B

Sim(A, B) = cos(0) = A T Bl

HAYSTACK e, adelean

Cosine Similarity vs Euclidean Distance

Use case Algo
Search engines, NLP, embeddings Cosine
Feature-rich numeric datgsets (images, etc.) Euclidean
Mixed types or hybrid models Sometimes a combination |
You don't know? Normalize & try both!

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & grzg meAN!F%QA!:!

Quantization

e Binary Quantization
o Fastest and most memory-efficient method
o " Up to 40x faster search speed and 32x smaller memory footprint

e Scalar Quantization
o Minimal loss in precision
o Memory footprint reduced by up to 4x

e Product Quantization
o Highest compression ratio
o Memory footprint reduced by up to 64x

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & Qag%!p%%g

Disk Memory Requirements

Required memory= (Number of vectors x Vector size x Size

of Type) + (Number of vectors * 4 * HNSW.m)

H AYSTACK 2025-04-23 #HaystackConf @a2lean 3 QRAdcTEN!SMQAQ

Disk Memory Requirements

Required memory= (Number of vectors x Vector size x Type)

+ (Number of wvectors * 4 * HNSW.m)

H AYSTACK 2025-04-23 #HaystackConf @a2lean 3 QRAdcTEN!SMQAQ

Better with quantization

Required memory= Number of vectors x (Vector size + 4)

H AYSTACK 2025-04-23 #HaystackConf @a2lean 3 QRAdcTEN!SMQAQ

Better with quantization

Required memory= Number of vectors x (Vector size + 4)

‘

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] 3 QRAdcTEN!FoeRMQAQ

Better with quantization

: Float32 = (Number of vectors x Vector size x Size of Type) +
GB by TYPE (Number of vectors * 4 * HNSW.m)

4000

int8 = Number of vectors x (Vector size + 4) + (Number de
vectors *4 * HNSW.m)

int4 = Number of vectors x (Vector size/2 + 4) + (Number
de vectors * 4 * HNSW.m)

bbq = Number of vectors x (Vector size/8 + 12) +'(Number
of vectors * 4 * HNSW.m)

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & gag mem!;%%g

Quantization methods

Method

element_type:
byte

element_type:
bfloatl6

External PQ/ OPQ

BBQ (Blockwise

Quantization)

Type

8-bit

16-bit

Preprocessing

Blockwise

2025-04-23

Available in

Free Tier

Yes

Yes (from 8.12)

Yes (store +

search)

No
(experimental

only)

Description

Lightweight, fast search; lowest memory usage but

may reduce accuracy.

Balanced approach; lower memory than float32 with

better accuracy than byte.

Quantize vectors externally; Elasticsearch stores

and searches the result.

Prototype stage; aims for high compression with

minimal loss in quality.

adelean

HAYSTACK

#HaystackConf

[QEVALE]R

&P EXTRACT TRANSFORM SEARCH

Quantization methods

Lucene scalar quantization Faiss 16-bit scalar quantization

Use built-in scalar quantization for the Lucene
engine Use built-in scalar quantization for the Faiss engine

Faiss product quantization Binary quantization

Use built-in product quantization for the Faiss
engine Use built-in binary quantization for the Faiss engine

H AYSTACK 2025-04-23 #HaystackConf QEVALER e ad eleaD

Cluster configuration

RAM

e 064 Go of RAM for each node

> 64Go

Y

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] s QRQT%!SMQAQ

Cluster configuration

e 64 Go of RAM for each node
e 32 Go dedicated to the JVM

o allows to benefit from
compressed-object pointers and
Garbage collection issues

HAYSTACK 2025-04-23

#HaystackConf

RAM

> 64Go

Y

QEVALE]R

adelean

v EXTRACT TRANSFORM SEARCH

Cluster configuration

e 64 Go of RAM for each node
e 32 Go dedicated to the JVM

o allows to benefit from
compressed-object pointers and
Garbage collection issues

e Vectors are stored off-heap, in
the filesystem cache

HAYSTACK 2025-04-23

#HaystackConf

RAM

> 64Go

Y

QEVALE]R

adelean

v EXTRACT TRANSFORM SEARCH

Cluster configuration

If we simplify, we could say that the entire filesystem cache is
available for our vectors.

But that's not entirely true — benchmarks are essential to
understand real-world behavior!

In our case, with 610 GB of quantized int8 vectors, we need
around:

e 20 data nodes
e dedicated master nodes
e coordinator nodes

and possibly ML nodes (depending on your use case).

This setup ensures enough memory and compute to support
efficient search, ingestion, and model-based operations
across the cluster.

HAYSTACK 2025-04-23 #HaystackConf (@EPA[E]

adelean

v EXTRACT TRANSFORM SEARCH

Preloading vectors into the cache

This can be very useful to speed up
operations after a cluster restart.

However, don't overuse it, or it might :

actually slow down search performance ‘index. Stor‘?;pfefoaf"‘ .
veq", "vex

due to memory pressure.

There are different extensions depending
on the type of vector being loaded:

e vex for HNSW graphs
e vegq for quantized vectors
e vec for all non-quantized vectors

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] s QRQEN!SMQAQ

Disk Memory Requirements with quantization

Disk memory required = Number of vectors x Size of vector

x Size of Element Type + Number of vectors x Size of
vector x Size of Type (quantization)

When using Lucene quantization (which is the default when
element_type is set to float), both quantized and

non-quantized vectors are stored within the
object.

To analyze how disk space is being used, you can run

index/ disk usage?run expensive tasks=true

H AYSTACK 2025-04-23 #HaystackConf @a2lean 3 QRAdcTEN!SMQAQ

_source and knn

Additionally, non-quantized vectors are
stored twice:

"mappings" {
e In the knn_vector field L

"o Inthe source field J "vectors fields"

You can disable storing vectors in _source }
to save space, but this removes the ability
to perform a reindex later on—so it's a
trade-off between storage optimization and

operational flexibility.

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] s QRQEN!SMQAQ

Disk Memory Requirements with quantization

With 1 billion vectors of 1024 dimensions

Without _source With _source
10000 10000

8000

6000

4000

2000

0
Float32

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] & g}zg m@m!;gwéAg

Disk Memory Requirements with qiyg

| can reduce it
to less than

With 1 billion vectors of 1024 1B

Without source
10000

8000
6000
4000
2000

0
Float32

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & grzg meAN!F%QA!:!

from sentence_transformers import SentenceTransformer
from sentence_transformers.quantization import quantize_ embeddings

1. Load an embedding model
model = SentenceTransformer('lLajavaness/bilingual-embedding-large’, trust_remote code=True)

2a. Encode some text using "binary”™ quantization
binary_embeddings = model.encode@
["I am driving to the lake.", "It is a beautiful day."],
precision="binary”,

Element_type quantization

PUT _ingest/pipeline/scalar_quantization_pipeline

{

"description”: "Pipeline to quantize to int8",
o . “processors”: [
How to maximize memory {
* "seript”: {
M Tgoupcge™:s St
savings? def min.va1 = 100

def max_val = 0;

for(value in ctx.vector){
if(value < min_val) min_val
° if(value > max_val) max_val

External Quantization :

def range = max_val - min_val;

(binary or scalar)
- Quantization with pipeline e

def quantized_vector = [];

for (v in ctx.vector) {
def normalized = (v - min_val) / range;
def scaled = normalized * (quant_max - quant_min) + quant_min;
quantized_vector.add(Math.round(scaled));

}

ctx.quantized_vector = quantized_vector;

H &YSTACK 2025-04-23 #HaystackConf (@EPA[E] & 9}29 mem!gé/xg

Demo

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & Qag%!p%%g

Conclusion

What have we seen ?

e Vector search can be extremely resource-intensive, but we can

adopt severalstrategies to reduce the cost:

o Quantization
o Better chunking strategies
o Excluding _source

What's next ?

o« We'll explore how performance changes when RAM is insufficient.
o« We'll learn how to optimize vector search using different types of
modeling.

H AYSTACK 2025-04-23 #HaystackConf (@EPA[E] & Qagmem!p%%g

HAYSTACK
- Thank you!

.adelean.co |
@info@adelean.com d I
g@aZIean a e i ea n

| ’ search with

