HAYSTACK 2024.04.24

The Search Relevance Conference

=

Personallzmg search using =
multimodal latent behavioral embeddmgs

| Trey Grainger

: v A\ /\ ".
N earchkernel
\\‘

Founder / CTO
Author, Al-Powered Search

#haystackconf .

.\Search kernel

Building the next generation of Search.

Career Education
Lucidworks
@ Searchkernel
Chief Algorithms Officer

Founder / CTO SVP Engineering

[A Presearch CAREERBUILDER

Chi?f Technology Director of Engineering,

Officer

Search & Recommendations

Trey Grainger
Dougq Turnbull
Max [rwin

/I/. MANNING

(45% Discount Code: Ctwhaystack45)
https://aiPoweredSearch.com

AI Powered Search

RAG (Retrieval Augmented Generation)
Generative Search & Summarization
Learning to Rank

Semantic Search

Dense Vector Search

Fine-tuning LLMs for Search
Personalized Search & Recommendations
Knowledge Graph Learning

User signals boosting & click models
Crowdsourced Relevance

Agenda

* The personalization spectrum between search and recommendations

* Leveraging a user’s signals to implement collaborative filtering and
personalization from latent features

* Using embedding vectors to generate personalization profiles

* Mixing user signals and to generate
multimodal personalization

. to create personalization guardrails

* Avoiding the pitfalls of personalized search

What is an embedding?

Embeddings

Word/Phrase Embeddings:

/ " 1342 1,5, 3]
“ b)) b b b)

("though VeCtory 2 [4.1,3,01,1,4,2]

/

- / e Embeddings:

/ = [2,3,2,4,2,1,5,3]

- [5,3,2,3,4,0,3,4]

/ Paragraph Embeddings:
[5’ 1’4’ 1’072’470]
1,0,0,0]

I

[1’ 17 4’ 2’

Document Embedding:
—[4.1,4,2,1,2,4,3]

Definition of an embedding?

a Hugging Face

An embedding is a numerical representation of a
piece of information, for example, text,
documents, images, audio, etc.

https://huggingface.co/blog/getting-started-with-embeddings

c>

An embedding is a relatively low-dimensional space
into which you can translate high-dimensional
vectors. Embeddings make it easier to do machine
learning on large inputs like sparse vectors representing
words. Ideally, an embedding captures some of the
semantics of the input by placing semantically similar
inputs close together in the embedding space.

https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture

25

CLOUDFLARE

embeddings are vectors created by machine learning
models for the purpose of capturing meaningful data
about each object

https://www.cloudflare.com/learning/ai/what-are-embeddings/

Embedding is a means of representing objects like
text, images and audio as points in a continuous
vector space where the locations of those points in
space are semantically meaningful

https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture

An embedding is a set of coordinates
in vector space into which we map a
concept.

Embedding concepts into a vector space

prompt Q

https://atlas.nomic.ai/map/stablediffusion

An inverted index creates embeddings,

with one dimension per term

apple caffeine cheese coffee drink donut food juice pizza tea | water ...term N

latte 0] 0] 0] 0] 0] 0] 0] 0] 0] 0] 0
cappuccino 0 0] 0 0 0 0 0 0 0 0 0
apple juice 0 0 0 0 0 0 0 0 0
cheese pizza 0 0 0 0 0 0 0 0 0
donut 0] 0] 0] 0] 0] 0] 0] 0] 0] 0
soda 0] 0] 0] 0] 0] 0] 0] 0] 0] 0] 0
green tea 0 0 0 0 0 0 0 0 0 0
water 0] 0] 0] 0] 0] 0] 0] 0] 0] 0]

cheese bread sticks 0] 0] 0] 0] 0] 0] 0] 0] 0] 0
cinnamon sticks 0 0 0 0 0 0 0 0 0 0 0

Embedding (verb) maps concepts into another
vector space (usually a lower-dimensional space)

apple juice 0] 5 0 0 0 4 4
cappuccino |0 5 0 4 1|

cheese bread | 5 0] 4 5 0] 1 4

sticks

cheese pizza | 5 0 4 4 0 1 5
cinnamon 0] 1 5 0]

bread sticks

donut 9 0] 1 5 0] 4 5 1
green tea 0] 5 0 0) 1 1 >
latte 0 5 4 0 < 1
soda 0] 5 0] 0] 5 5 0]
water 0] 5 0] 0] 0] 0] 0] 5

We then leverage the vector space to explore similarity

Phrase: Vector: Vector Similarity (a, b):
apple juice: [0,5,0,0,0,4,4,3]

cappuccino: [0,5,3,0,4,1,2,3] —_

cheese bread sticks: [5,0,4,50,1,4, 2]

cheese pizza: [5,0,4,4,0,1,5, 2]

cinnamon bread sticks: [5,0,4,5,0,1,4, 2]

donut: [5,0,1,50,4,51] yector Similarity Scores:

green tea: [0,5,0,0,2,1,1,5]

latte: [0,5,4,0,4,1,3,3] Ranked Results: Cheese Pizza Ranked Results: Green Tea
soda: [0,5,0,0,3,5,5,0]

water: [0,5,0,0,0,0,0,5]

0.19 water 0.19 donut

With LLMs and other Foundation
Models, the dimensions learned
are Latent Features™.

2 * We'll return to this later

Dimensions of User Intent

Personalized
Search

Collaborative
Recommendations

User
Understanding

Keyword
Search

Content
Understanding

Domain-aware
Matching

Semantic
Search

Knowledge Graph

Domain
Understanding

Personalization Spectrum

Traditional User-guided
Keyword Search Recommendations
(Completely User-specified) (Mostly driven by user profile,

partially user-specified)

e e e e

Personalized Traditional
Search Recommendations
(Mostly user-specified, (Completely driven by user profile)

partially driven by user profile)

User-guided
Recommendations

(Completely User-specified)

Personalized Collaborative

Queries Recommendations
(Completely driven by
user behavior)

Recommendations Approaches

Content-based Matching (Content Filtering)

@ detergent fabric softener

category:(laundry category:(laundry
. text: cleans(clothes)sootiess and removes xt: sottens(clothesyand
Recommendations: | SOTIEARE e S~
stains leaving 1resh citrus scent leaves’a fresn citrus scent

-fabric softener
-dryer sheets

aryer sheets

category{laundry

text: removes static
electricity froni(clothes)and
leaves « fresh citrus scent

Content-based Recommendations

Recommendations Approaches

Behavior-based Matching (Collaborative Filtering)

@ fertilizer add to cart screwdriver
click

. hase
Recommendations: soil . hammer
Chase
-soil cick
il
-mulch mulch SZ nafs

G
p ur, Chase 696\@

Collaborative Recommendations

Recommendations Approaches

Content-based Matching (Content Filtering) + Behavior-based Matching (Collaborative Filtering)

Prior User Interactions

OR drill »
category: tools screwdriver Jurchase
text: automatically(drill)in . ddtC;)Cart
u
: screws instead of using a ammer o rchase
Recommendations: . ase
screwdriver oure, =
-Screws nails Qse [OCQ/T
-screwdriver PUrchase
-hammer
-nails screws

category: parts
text: Jsed withScrewdriver br
drill o fasten items together

Multi-modal Recommendations

Collaborative Filtering

*User 1:
*Avengers: Endgame
*Black Panther
*Black Widow

*User 2:
*Black Widow
*Captain Marvel
*Black Panther

*User 3:
*Black Widow
*The Dark Knight
*The Batman

*User 4.
*The Little Mermaid
*The Lion King
*Toy Story

*User 5:
*frozen
*Toy Story
*The Lion King

Users 1-3:

*All of these are movies about superheroes
*Most of them were made by Marvel Studios,
though some were made by Warner Brothers (DC
Comics)

*They are all action movies

*They are not suitable for small children due to
violence and/or language

Users 4-5:

*All of them are animated movies

*All of them are suitable for small children
*All of them are made by Disney/Pixar

Collaborative Filtering (Alternating Least Squares)

(N N @ Alternating Least Squares (Matrix Factorization based Collaborative Filtering) Resu ItS:

. . . Root-mean-square error = 0.9589
from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.ml.recommendation import ALS
from pyspark.sql import Row o= L +
|lusexrIndex| recommendations|
als = ALS(maxIter=3, rank=10, regParam=0.15, implicitPrefs=True, SR R S . +
=]] n = ~n n . = n L n
userCol="userIndex", i1temCol="productIndex", ratingCol="rating", o [{11, 0.014824464 . . .

coldStartStrategy="drop", seed=0) 1|1[{5, 0.010805087}

I
|
2|[{7, 0.060263287}... |
31[{1, 0.02967207}, ... |

I

model = als.fit(indexed_prefs) (1) 4|[{14, 0.007906279...

predictions = model.transform(test) (1) ———— e ——— +

evaluator = RegressionEvaluator(metricName="xrmse", labelCol="rating",
predictionCol="prediction")

rmse = evaluator.evaluate(predictions)

print(f"Root-mean-square error = {rmsel}")

|
|
(training, test) = indexed_prefs.randomSplit([6.8, 0.2], 0) |
I
I

only showing top 5 rows

indexed_user_recs = model.recommendForAllUsers(10)
indexed_user_recs.show(5)

User: u478462

Previous Searches:
——apple
——macbook

Previous Product Interactions:

——type: click, name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black
——type: add-to-cart, name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black
——type: purchase, name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black
——type: click, name: Apple® - MacBook® Air - Intel® Core™ i5 Processor

@ @ Alternating Least Squares (Matrix Factorization based Collaborative Filtering)

def get_query_time_boosts(user, boosts_collection):

request = {"query": .

"return_fields": ["product", "boost"],
"filters": [("user", user)] if user else [],
"limit": 10,

"order_by": [("boost", "desc")]l}

response = boosts_collection.search(request)
signals_boosts = responsel"docs"]
return " ".join(F'"{b["product"1}"~{b["boost"] * 100}' for b in signals_boosts)

def run_main_query(query, signals_boosts):
request = product_search_request(query if query else "")
request["query_boosts"] = signals_boosts if signals_boosts else
return products_collection.search(request)

ll*

recs_collection = engine.get_collection("user_item_recommendations")
user = "u478462"
boosts = get_query_time_boosts(user, recs_collection)

response = run_main_query(None, boosts)

print(r"Boost Query:\n{boosts}")
display_product_search("", responsel"docs"])

Boost Query:

"885909457588""75.393623 "097360810042""18.904798 "821793013776""15.852094 "610839379408""10.
217768000000001 "635753493559"79.087185 "885909395095"78.304988 "885909457595""7.917564000000
0005 "885909431618""7.375394 "885909459858""6.592548 "885909436002""6.1031554

Recommendations:

H Search ‘

Name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black | Manufacturer: Apple®

9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support; measures just 0.34" thin
and weighs only 1.35 Ibs.

Name: HTC - Flyer Tablet with 16GB Internal Memory - White | Manufacturer: HTC

Android 2.3 Gingerbread operating system7" color touch screenWi-Fi16GB memoryHTC notes,
Watch and Listen apps

Name: Asus - Eee Pad Transformer Tablet with 16GB Storage Memory - Brown/Black |
Manufacturer: Asus

Android 3.0 Honeycomb10.1" WXGA IPS touch screen Wi-Fi16GB hard drive

Name: Samsung - Galaxy Tab 10.1 - 16GB - Metallic Gray | Manufacturer: Samsung

Android 3.1 (Honeycomb) operating system10.1" WXGA touch screenWi-Fi

Name: Apple® - iPod touch® 32GB* MP3 Player (4th Generation - Latest Model) - Black |
Manufacturer: Apple®

FaceTime camera, HD video recording, Retina display, Multi-Touch interface; gorgeous 3.5"
widescreen display; Wi-Fi Web browsing

Name: Apple® - iPad® 2 with Wi-Fi - 32GB - Black | Manufacturer: Apple®

9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support

® @ Non-personalized Search Results

query = "tablet"

response = run_main_query (
query, None, 7
)
print(f"Non-personalized Query")
display_product_search(
query, responsel["docs"]

Non-personalized Query

tablet

| Search

Name: Init™ - Tablet Sleeve - Olive | Manufacturer: Init™

Fits most tablets with up to a 10" display; heavy-duty neoprene material

Name: Memorial Tablet - CD | Manufacturer: Ltm/cd41

Name: Stone Tablet - CD | Manufacturer: Important Records

Name: Sony - AC Power Adapter for Sony Tablet S | Manufacturer: Sony

Compatible with Sony Tablet S; charges your tablet

Personalized Query

° @ Personalized Search Results tablet | Search |

Name: Apple® - iPad® 2 with Wi-Fi - 16GB - Black | Manufacturer: Apple®

9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support; measures just 0.34" thin and weighs only 1.35 lbs.

query = "tablet"

Ie C S —C O.L.Le C t i 0 n = e n g i n e . ge t — C o -Ll e C t i O n (Name: HTC - Flyer Tablet with 16GB Internal Memory - White | Manufacturer: HTC
n u S e I_ i t e m_r e C o mm e n d a t i 0 n S n E Android 2.3 Gingerbread operating system7" color touch screenWi-Fi1l6GB memoryHTC notes, Watch and Listen apps

)
user = "u478462"

Name: Asus - Eee Pad Transformer Tablet with 16GB Storage Memory - Brown/Black | Manufacturer: Asus

b 0 0 S t S = g & t _ q uer y _ t i me _ b 00S t S (- e & il Android 3.0 Honeycomb10.1" WXGA IPS touch screen Wi-Fi16GB hard drive
user, recs_collection
) Name: Samsung - Galaxy Tab 10.1 - 16GB - Metallic Gray | Manufacturer: Samsung
Android 3.1 (Honeycomb) operating system10.1" WXGA touch screenWi-Fi
IeSponse — Iun_main_query(query, bOOStS 3 7) " Name: Apple® - iPad® 2 with Wi-Fi - 32GB - Black | Manufacturer: Apple®
pri n t (f" P e r S O n a 'L i Z e d Q u e r y n) 9.7" widescreen display; 802.11a/b/g/n Wi-Fi; Bluetooth; iBooks support
display_product_search(query, responsel"docs"])

Name: Init™ - Tablet Sleeve - Olive | Manufacturer: Init™

Fits most tablets with up to a 10" display; heavy-duty neoprene material

Name: Memorial Tablet - CD | Manufacturer: Ltm/cd41

Personalizing search using embeddings

Learned embeddings are latent features

Latent Features i :)) = computer-like?
(Content-based)

User-ltem Interaction Matrix

ltems
A
[
Avengers: Black Notting The The
Endgame Panther Hill Notebook Minecraft Bachelor

(Movie) (Movie) (Movie) (Movie) (Game) (TV Show)

Users —

Matrix Factorization... learning latent features from user signals

LR OOE

Avengers: Black Knotting The The
Endgame Panther Hill Notebook Minecraft Bachelor
(Movie) (Movie) (Movie) (Movie) (Game) (TV Show)

User-ltem Rankings (R)

Avengers: Black Knotting The The
End Panther Hill Notebook Mi ft Bachel
@ 0.67 |-0.51| 2.81 (I\r;lo%/?g)‘e (Movie) (I\lﬂovie) (Movie) (Glannizr)a (;\;sic?\:/)
Latent Item
@ 113 | 3.18 | -0.13 0.09 | 0.71 | 1.91 | 1.74 | 1.80 | 0.28 | reature1
P~ Latent Item
L = @ 166 | 008 250 x 0.75 | 0.75 | 2.17 | 2.54 |-1.17 | 3.02 | reature2
Latent Item
5 @ P T 3.43 | 2.21 [0.01 | 0.46 | 1.89 | 0.30 | raseures
7 @ 2.20 | 2.16 | -0.20
Latent Latent Latent
User User User
Featurel Feature2 Feature3
User Feature Matrix (U) ltem Feature Matrix (1)

Learning embeddings of USERS allows us to personalize search results

Current search: | microwave Previous Interactions: | Hello Kitty Plush Toy | GE Electric Razor (M)
GE Bright White
Light Bulbs Refrigerator

GE - 0.7 Cu. Ft. Compact Microwave - Black @ VS. Samsung - Mid-Size Microwave - Stainless-steel €

Dept Appliance Brand Samsung Color Stainless-

Dept Appliance Brand GE Color Black Steel

Hello Kitty - 0.7 Cu. Ft. Compact Microwave

Samsung - 1.7 Cu. Ft. Over-the-Range
Microwave - Stainless-Steel

Dept Photo/Commodities Brand Hello Kitty

GE - 1.1 Cu. Ft. Mid-Size Microwave - White

Dept Appliance Brand Samsung Color Stainless-

Clustering products by embedding to
generate dynamic categories

o000 @ Clustering products to generate dynamic category contexts

def get_clusters(data, algorithm, args, kwds):
return algorithm(*xargs, xxkwds).fit(data)

def assign_clusters(labels, product_names) :
clusters = defaultdict(lambda:[], {})

for 1 in range(®, len(labels)):
clusters[labels[i]].append(product_names[i])

return clusters

algo = get_clusters(product_embeddings, cluster.KMeans, (),
{"n_clusters":100, "n_init":10, "random_state":0})

algo.predict(product_embeddings)

labels =
assign_clusters(labels, product_names)

clusters =

Visualizing the clusters

@ Visualize the category contexts

import collections, numpy as np, matplotlib.pyplot as plt
from adjustText import adjust_text
from sklearn.decomposition import PCA

plt.figure(rigsize=(15, 15))

pca = PCA(100, svd_solver="full")
centers = algo.cluster_centers_
plot_data = pca.fit_transform(centers)

points = []
for i, cluster_name in enumerate(plot_data):
plt.scatter(plot_datali,@]l, plot_datali,1],
s=30, color="k") (2)
label = A {i}_{"_".join(top_words(clusters[i],
points.append(plt.text(plot_datali, o],
plot_datali, 1],
label, size=12))
arrowprops=dict(arrowstyle="
color="gray", alpha=.3))

2))}"

adjust_text(points,

plt.show()

.39_Range_SeIf-C|eaning

21.30"_Range .61_Guitar_EIectric

76 Mlcrowave Cu.
33 Ft Cu 27_Stainless-Steel_Black
Cu._Ft.

6
47_Veh|c|es_SeIect S
40_Vacuum Bagle s

58_Air_White o ® 95 | Razor _Rlack

9 _Headphones_Earbud oo, 03 Subwoofer 10"
96 _Radio_Anteffna
43 Apple&#XxAE; QPodS#XAE

g_fgs}r;&::;fgiiass 4 Case Black

65 Case Mobile
P0_Charger . Adapter 88 Laptop_Case

.S?ZAGG Invisi EHIELD _.15 Prlnter Wireless
10_Battery® Litl

25_Mobile_Pfone e
74 erelesshN switdieye
89 _Mouse_Wireless
. 91 _USB_ Drlve
50_Drive_| Hard 71 _Memory_Card

92_Amplifier_Class

34_M-Edge_Accessories

45 _Cartridge_Ink
67_Keyboard_Wireless

ystemg Camera
rﬁP§ 99 Card_Prepaid

.2_Home_Theater
41_Camera_D|g|taI

[J
77 _card_pci® 26_TVs_Flat-Pane

.46_Memory_Processor

o1 /_Laptop_Memory 42_Camcorder HD

.70_Monitor_Widescreen

49 Player 3D
T i

.59_H DTV Class

22 Deck_Apple&#XxAE;

37_Black_Stand
60_GPS_Garmin

48_Camera_Black .
iumel 32_Cable_Monster

75_Adobe_Windows

87 CD_[PA]

94 CD_You

20_CD_[Digipak]
N 414.CD _Best

30_CD_Best"
*72_cD_[PA]

GJILVINYL_[LP]

. *7 €D _various
3_CD_Various e

B4_CD_[ECD] ° 8 CD_Greatest
- []
51_CD_de

073 CD_[CD

55_CD_0riginaI.

16_(Pair)_Speakers 24_DVD _Live,

38_Microphone_USB

28_Black_Chair 78_Light_Lighting

35_Watch_Monitor 52_DVD_Widescreen

19 _Nintendo_Wii

[]
53_DVD_Workout
86_DVD_Season
85 Lens Camera%

23_Windows_Mac/Windows
° 82_Windows Mac/Wmdows

® 79 _PlayStation PSP

.81_DVD_Discs]

18_DVD_Season
31 DVD Discs]
62gDVD_Fullscreen

29 DVD Dlscs]o 13 DVlf Discs]
83_DVD ' WWE

36_DVD_Disc 54 _Blu-ray_Disc

.93_Season_DVD

56_Do|by_Widescreen.

44 Widescreen | DVD,

98_Subtitle_ DVD
66_DVD_Widescreen o 1 AC3 Subt|t|e

12_W|descreen_DVD. .97_AC3_W|descreen

Mapping queries into clusters (multiple approaches)

[N N @ Different approaches for mapping queries into clusters
import sentence_transformer, heapq

def get_top_labels_centers(query, centers, n=2):
g_emb = transformer.encode([queryl, convert_to_tensor=False)
similarities = sentence_transformers.util.cos_sim(qg_emb, centers)
sim = similarities.tolist()[0]
return [sim.index(i) for i in heapq.nlargest(n, sim)]

def get_query_cluster(query): #<5>
g_emb = transformer.encode([queryl, convert_to_tensor=False)
return algo.predict(q_emb)

def get_cluster_description(cluser_num) :
return "_".join(top_words(clusters[cluser_numl, 5))

query = "microwave"

kmeans_predict = get_query_cluster(query)[0] #<i>

print("KMeans Predicted Cluster:")

print(r" {kmeans_predict} ({get_cluster_description(kmeans_predict)})")

closest_sim = get_top_labels_centers(query, centers, 1)[0] #<2>
print(f"\nCosine Predicted Cluster:")
print(r" {closest_sim} ({get_cluster_description(closest_sim)})")

knn_cosine_similarity = get_top_labels_centers(query, centers, 5) #<3>
print(f"\nKNN Cosine Predicted Clusters: {knn_cosine_similarity}")
for n in knn_cosine_similarity:

print(r"

{n} ({get_cluster_description(n)})")

Results:

KMeans Predicted Cluster:

76

(Microwave_Cu._Ft._Stainless-Steel_Oven)

Cosine Predicted Cluster:
76 Microwave_Cu._Ft._Stainless-Steel_Oven)

KNN Cosine Predicted Clusters: [76, 27, 21, 39, 33]

76
27
21
39
33

(Microwave_Cu._Ft._Stainless-Steel_Oven)
(Stainless-Steel_Black_KitchenAid_Cuisinart_Maker)
(30" _Range_Stainless-Steel_Gas_Cooktop)
(Range_Self-Cleaning_30"_Freestanding_Stainless-Steel)
(Ft._Cu._Refrigerator_Water_Thru-the-Door)|

Approaches for integrating embedding-based
personalization Into search results

* Perform a weighted average between the query vector (embedding for microwave) and the vectors for the
user’s previous interactions within the predicted clusters. This would generate a single vector representing a
personalized version of the user’s query, so all results would be personalized.

* Perform a standard search, but then boost the results based on the average of the embeddings from a user’s
previous interactions within the predicted clusters. This would be a hybrid keyword and vector-based ranking
function, where the keyword search would be the primary driver of the results, but the user’s previous
interactions would be used to boost related results higher.

* Do one of the above, but then only personalize a few items in the search results instead of all the results. This
follows a light-touch mentality so as not to disturb all of the user’s search results, while still injecting novelty to
enable the user to discover personalized items they may not have otherwise found.

* Perform a standard search (keyword or vector), but then re-rank the results based on the weighted average
between the query vector and the vectors for the user’s previous interactions within the predicted clusters.
This uses the original search to find the candidate results using the default relevance algorithm, but then those
results are re-ranked to boost personalized preferences higher.

Generating personalization vectors for a user's query

o000 @ Generating a personalization vector for the user's query
import pandas, numpy

def get_user_embeddings(products=[]):
values = []
for p in products:
values.append([product_ids_emb[p],
top_clusters_for_embedding(product_ids_emb[pl, 1)[0]])
column_names = ["embedding", "cluster"]
return pandas.DataFrame(data=numpy.array(values), index=products,
columns=column_names)

def get_personalization_vector(query=None,
user_items=[1,
query_weight=1,
user_items_weights=[]):
query_embedding = transformer.encode(query) if query else None

if len(user_items) > 0 and len(user_items_weights) = 0:
user_items_weights = numpy.full(shape=len(user_items),
fill_value=1 / len(user_items))

embeddings = []

embedding_weights = []

for weight in user_items_weights:
embedding_weights.append(weight)

for embedding in user_items:
embeddings.append(embedding)

if query_embedding.any():
embedding_weights.append(query_weight)
embeddings.append(query_embedding)

return numpy.average(embeddings, weights=numpy.array(embedding_weights),
axis=0).astype("double") if len(embeddings) else None

Generating contextual user personalization vectors

o000 @ Contextual (filtered) vs. Non-contextual (unfiltered) personalization vectors R I °
esults:
product_interests = ["7610465823828", #hello kitty water bottle

"36725569478"] #stainless steel electric range . . .
Products Interactions for Personalization:

product embedding cluster
7610465823828 [0.06417941, 0.04178553, -0.0017139615, -0.020...] 28
36725569478 [0.0055417763, -0.024302201, -0.024139373, -0....] 39

user_embeddings = get_user_embeddings (product_interests)
query = "microwave"

unfiltered_pexrsonalization_vector = get_personalization_vector(query=query,
user_items=user_embeddings|['embedding'].to_numpy()) #<1>

print("\nPexrsonalization Vector (No Cluster Guardrails):")

print(format_vector(unfiltered_personalization_vector))

Personalization Vector (No Cluster Guardrails):
[6.016, -0.006, -0.02, -0.032, -0.016, 0.008, -0.0, 0.017, 0.011, 0.007,...]

Query Clusters ('microwave'):
[76, 27, 21, 39, 33]
query_clusters = get_top_labels_centers(query,
centers, n=5) #<2> Products Filtered to Query Clusters:
print("\nQuery Clusters ('microwave'):\n" + str(query_clusters)) product embedding cluster
36725569478 [0.0055417763, -0.024302201, -0.024139373, -0....] 39
clustered = user_embeddings.cluster.isin(query_clusters) #<3>
products_in_cluster = user_embeddings[clustered] #<3> Filtered Personalization Vector (With Cluster Guardrails):
print("\nProducts Filtered to Query Clusters:\n" + str(products_in_cluster)) [0.002, -0.023, -0.026, -0.037, -0.025, 0.002, -0.009, 0.007, 0.033, -0....]

filtered_personalization_vector = get_personalization_vector(query=query,
user_items=filtered['embedding'].to_numpy()) #<4>

print("\nFiltered Personalization Vector (With Cluster Guardrails):")

print(format_vector(filtered_personalization_vector))

#<1> Personalization vector with no guardrails

(uses query and all past item interactions)

#<2> Get the top 5 clusters for the query to use as guardrails
#<3> Filter down to only items in the guardrail query clusters
#<4> Generate a personalization vector with guardrails

(uses query and only items related to the query)

Run different personalization scenarios

[X X) @ Run Different Personalization Scenarios

def rerank_with_personalization(docs, personalization_vector):
result_embeddings = numpy.array([product_ids_emb[docs[x]["upc"]1]
for x in range(len(docs))]).astype(float)
similarities = sentence_transformers.util.cos_sim(
personalization_vector, result_embeddings).tolist()[0]
reranked = [similarities.index(i)
for i in heapq.nlargest(len(similarities), similarities)]
reranked, v = zip(sorted(enumerate(similarities),
key=itemgetter(1l), reverse=True))
return [docs[i] for i in reranked]

query = "microwave"
request = {"query": query,
"query_fields": ["name", "manufacturer"],
"return_fields": ["upc", "name", "manufacturer", "score"],
"limit": 100,
"order_by": [("score", "desc"), ("upc", "asc")]}

response = products_collection.search(*request)
docs = responsel"docs"]

print("No Personalization:")
display_product_search(quexry, docs[0:4])

print("Global Personalization (no category guardrails):")
reranked_seach_results_no_guardrails = \
rerank_with_personalization(docs,
unfiltered_personalization_vector)
display_product_search(query, reranked_seach_results_no_guardrails[@:4])

print("Contextual Personalization (with category guardrails):")
reranked_seach_results_with_guardrails = \
rerank_with_personalization(docs,
filtered_personalization_vector)
display_product_search(query, reranked_seach_results_with_guardrails[0:4])

No Personalization

Global Personalization

(No Category Guardrails)

‘ microwave ‘ ‘ Search ‘

Name: LG - LMHM2017SW Microwave Oven - White |
Manufacturer: LG

Name: Panasonic - NNCD989S Microwave Oven - Stainless-Steel |
Manufacturer: Panasonic

Name: West Bend - Microwave Popcorn Popper - Red |
Manufacturer: West Bend

Name: Hello Kitty - 0.7 Cu. Ft. Compact Microwave
Manufacturer: Hello Kitty

‘ microwave ‘ ‘ Search ‘

Name: Hello Kitty - 0.7 Cu. Ft. Compact Microwave
Manufacturer: Hello Kitty

—

Name: Electrolux - 1.5 Cu. Ft. Built-In Microwave - Stainless-Steel |
Manufacturer: Electrolux

Name: Panasonic - 1.2 Cu. Ft. Mid-Size Microwave - Stainless-
Steel | Manufacturer: Panasonic

Name: Panasonic - 1.2 Cu. Ft. Mid-Size Microwave - White |
Manufacturer: Panasonic

microwave ’ ‘ Search ’

Name: Electrolux - 1.5 Cu. Ft. Built-In Microwave - Stainless-Steel |

Manufacturer: Electrolux

Name: Panasonic - 1.2 Cu. Ft. Mid-Size Microwave - Stainless-
Steel | Manufacturer: Panasonic

i

Name: Panasonic - 2.2 Cu. Ft. Full-Size Microwave - Stainless-
Steel | Manufacturer: Panasonic

[

Name: Panasonic - 2.2 Cu. Ft. Full-Size Microwave - Stainless-
Steel | Manufacturer: Panasonic

Multimodal models (language + behavior) can integrate these latent
features to discover new insights and enhance relevance

Avengers: Black Notting The The
Endgame Panther Hill Notebook Minecraft Bachelor
(Movie) (Movie) (Movie) (Movie) (Game) (TV Show)
Avengers: Black Notting The The ' ' '
Endgame Panther Hill Notebook Minecraft Bachelor
0.67 |-0.51| 2.81 (Movie) (Movie) (Movie) (Movie) (Game) (TV Show) 9.32 -0.51

0.09 | 0.71 | 1.91

@ 166 | -0.08 | 2.50 x 0.75 | 0.75 | 2.17

@ 005 | 276 | 2.29 3.43 | 2.21 | 0.01
@ 220 216 —020 1.13 2.74 8.89 H 1.05 7.08

Calculating Preferences from Latent Factors:

1.80 | 0.28

-1.17 | 3.02 | . | 6.64 3.02 384 | 781 | 097
—

1.89 | 0.30 9.92 7.10 5.92 7.98 1.01 9.01

LRV

Avengers: Endgame (Movie) The Notebook (Movie)

(0.67 * 0.09) + (*0.75) + (2.81 * 3.43) = 3.18 254 -0.13 0.46

9.32

Multimodal Vector Search

Collaborative
~ User Signals
f” [C ’ 00,13,] e Encoder Layer
b Image T
7 % # EnCOder #[’ ’ ’ ’ ’ y eee]’ Mo%l{r‘?ﬁ
Layer S
[0.00, 1.3, 26.9,0.23,0.0, 1.3, ...]]
Concatenate)
l ! Bz nyD::?euss 44
.. "but | like to be [0.00, 1.3,26.9,0.23,00, 1.3, ..., 82.3,0.02, |
here. Oh, | like it , , ..., 0.00, 1.3, 26.9,0.23,0.0, 1.3, ...] *’f re fish
a lot!" said the l =/%
Cat in the Hat to Titaom
the fish in the .‘{?\'I'I-ZI’.I’II,I,\R
pot... Multimodal Encoder /
Dimensionality Reduction

bbqg near atlanta

It’s also powerful to use many
optimize search quality

Parse Query

Boosts: doc12:500, <«
doc49:350,doc142:220 ...

query: +category:restaurants
+keywords:(bbg OR brisket

Signals Boosting

Knowledge Graph Lookup

A 4

v

OR pork OR ribs) <
+geo_dist(location,
33.7537, -84.3863)
=> doc54, docl142, doclg, ...

Keyword Search (Inverted Index)

Dense Vector Search

Similar <
recommendations:
docl7, doc2s, ...

Backfill / Fallback (if too few results)

Re-rank and Return Results

A 4

to

Keyword:bbq
location: Atlanta, GA, USA

category: restaurants
related: brisket, pork, ribs
latitude: 33.7537, -84.3863

Cosine Similarity:
[1.09, 0, 12.02,0.01, ...]
=> docl142, docl9, doclo, ...

Results:
docl2, doc142, doc49, ...

Reflected Intelligence: So many ways to integrate user signals...
Signals Boosting Feedback Loop

1. User searches for "ipad”

Collaborative Filtering (Recommendations)

2. Search logged and current model applied 3. Search returns boosted results

Recommendations for Alonzo:

: - + doc22: “iPad Pro” . ipad 2
= : . « doc12: “Kindle Fire” '
ipad o m— ; ‘ T e
User
/ Searches\

Users' actions

inform system -
improvements
query:. ipgd Query | Document | Signal Boost

User b
Document »\takes o /
boOst: o2 User [lom | Weight |
boost: doc 124 ;

\b

Matrix Factorization

6. Model improved for future searches 5. Doc Interactions Aggregated Per Query 4. User takes action

Le arn | n g to Ra n |< = M Related docs for Alonzo:
Initial Results: e

Personal Preferences for Alonzo:
Final Results: » doc22: “iPad Pro

. . Related docs for query “ipad”:
e . caieg;rv Tgilefsl pa— — + doc22: “iPad Pro”
])dOC3 ' oC 12 Indle rire . ra pple - . * B

2) docl
3) doc3

- doc12: “Kindle Fire” %
| + color: “black” :
3) doc2
/ Searches \

« storage: “32GB" =N
Users' actions

Document | Weight
User
inform system
improvements

Preferences | Weight Query | Document | Weight
[tablets]

Brand: Apple
Results color: black
'\ User T storage: 32GB
S\ takes an ——— User | Action | Document
o .
“4 action : ,

e = \»
Build Ranking Classifier doc? ‘\‘\\ T
(from Implicit Relevance Judgements) —

Signal Processing & Machin

Learning

Trey Grainger
Dougq Turnbull
Max [rwin

/./. MANNING

(35% Discount Code: ctwh aystack45)

AI Powered Search

RAG (Retrieval Augmented Generation)
Generative Search & Summarization
Learning to Rank

Semantic Search

Dense Vector Search

Fine-tuning LLMs for Search
Personalized Search & Recommendations
Knowledge Graph Learning

User signals boosting & click models
Crowdsourced Relevance

Get a copy @ http://aiPoweredSearch.com

(45% Discount Code: ctwhaystack45)

Thank Youl!

Trey Grainger

£ T AT

trey@searchkernel.com

@freygrainger
@ Searchkernel
Other presentations: Books:
http://treygrainger.com http://aiPoweredSearch.com

http://solrinaction.com

http://www.treygrainger.com/

