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● Founded 3 years ago, in May 2021

● 226 members strong 💪

● A vibrant community dedicated to empowering & 
celebrating women in search & related tech fields

● Provide a platform for networking, mentorship, and 
knowledge-sharing

Women of Search



Group 
Updates



● 'Happy Hour' continues: the 1st Wednesday of 
each month at 9 am PT.

● Typescript Working Group, founded and led 
by Moon Limb (S. Korea)

● Research Paper Reading Club, founded and 
led by Obiamaka Agbaneje (Canada)

Updates



Member shout-outs

Obiamaka Agbaneje Atita Arora Erika Cardenas Meghan Boyd

Moon Limb Ashia Zawaduk Elzbieta Jakubowska



● ‘Relevance & Matching Tech’ Slack group:
• Nearly 5k members
• >129k messages sent in past 30 days
• 88% of message-views in public channels in past 30 days

● Personally: 4 out of my 6 jobs in tech have come directly from 
relationships I have made via this Slack community

● My first suggestion for people interested in getting involved with 
search is to join this Slack workspace

Thank you, OSC



Let’s get 
into it



● Relevance
● Retrieval Models
● Indexing
● Query Processing
● Ranking
● Evaluation
● User Interaction

Core Areas of Information Retrieval



● Relevance
● Retrieval Models
● Indexing
● Query Processing
● Ranking
● Evaluation
● User Interaction

Core Areas of Information Retrieval

AI has been used in these areas 
before...
● 2013: Word2Vec released; FB 

incorporates graph search
● 2015: Google incorporates 

RankBrain; MSFT Bing 
incorporates neural nets

● 2018: BERT released
● 2022: ChatGPT released



Now, the pace of innovation has exploded.

With the advent of LLMs, AI has become an integral 
part of life for everyday people, not just academics 
and industry experts.

Nearly everyone in the world has now experienced the 
value-add of these technologies first-hand.

Collective expectation when information-seeking is to 
receive immediate, relevant, factual information in 
response to complex, ambiguous, and natural 
language questions.

So what’s special about now?



● Andi
● Metaphor
● Brave
● YOU
● Phind
● Perplexity
● Kagi
● Komo
● ...Then there are search engine-adjacent tools like 

Gemini, Glean, Bing Copilot, Waldo, ChatGPT, etc. 
● More everyday!

Search engines using AI now

Generative AI is 
cool, bro!!!!

https://andisearch.com/
https://metaphor.systems/
https://search.brave.com/
https://you.com/
https://www.phind.com/
https://www.perplexity.ai/
https://kagi.com/
https://komo.ai/
https://gemini.google.com/
https://www.glean.com/
https://copilot.microsoft.com/
https://www.waldo.fyi/
https://chat.openai.com/


Notoriously difficult IR techniques are now relatively 
easy

● Query intent identification
● Token/phrase disambiguation
● Query rewriting
● Multimodal search
● Metadata generation:

○ Document summarization
○ Keyword generation, etc.

● Advanced query stream 
analysis and segmentation

We are now living in an age in which virtually no 
IR techniques are off the table



Popular 
AI-Driven 
Information 
Retrieval 
Techniques



Popular AI-driven IR techniques 

● RAG: Retrieval Augmented Generation
○ Makes getting started with AI-driven IR incredibly easy
○ Tons of frameworks out there to help you get started

● Reranking 
○ Great for domain-specific corpori
○ Generally better than semantic search or lexical search by themselves
○ Easy to integrate into an existing lexical search stack

● Fine-tuning
○ Can essentially customize an already-great retrieval model for your 

domain



RAG
● TLDR: Give an LLM access to information it would otherwise not know about
● Advantages

○ Hardly any expert-level IR or ML knowledge necessary
○ Easy to spin up e2e RAG apps, POCs
○ Data can be in any format (not just vectors)
○ Drastically lower probability of hallucinations

● Notes
○ Since end product is generated, does not produce traditional IR outputs, e.g. ranked 

search results
○ Beholden to LLM context window limitations

● Ideal use cases
○ Chatbots
○ Q&A systems
○ Code generation
○ Personalization

● Popular tools
○ LlamaIndex
○ LangChain
○ Haystack

https://docs.llamaindex.ai/en/stable/
https://python.langchain.com/docs/get_started/introduction/
https://docs.haystack.deepset.ai/docs/intro


RAG: How it works
● Intercept user query en 

route to LLM
● Send user query to DB
● Retrieve top `k` results
● Add those results to 

prompt that you send to 
LLM

● Bam! LLM now knows 
new information and 
uses it to answer the user 
query



Advanced RAG
● RAG Fusion

○ Use LLM to generate versions of user query & execute in parallel, synthesize and rerank results

● Self-Reflective RAG
○ LLM trained to retrieve (or not) on demand, and understand when retrieved context is irrelevant

● Corrective RAG
○ RAG w/a lightweight evaluator in the loop to throw out suboptimal context

● Agentic RAG
○ Category of RAG techniques that use agents (reasoning engines (LLMs) that execute instructions) to orchestrate 

retrieval

● Small-to-Big Retrieval
○ Use small chunks to grab larger, more semantically coherent chunks to send to LLM

● RAG with HyDE
○ (Hypothetical Document Embeddings) Use LLM to generate hypothetical answer to user query; answer is used to 

retrieve similar (real) answers as context

● Chain of Abstraction
○ Fine-tune an LLM to generate abstract reasoning chains w/placehodlers for real-world values; using external tools & 

sources to fill placeholders

● More fine-grained pre- and post-processing of context, e.g.:
○ Context reranking
○ Vector quantization

https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2401.15884
https://medium.com/llamaindex-blog/agentic-rag-with-llamaindex-2721b8a49ff6
https://towardsdatascience.com/advanced-rag-01-small-to-big-retrieval-172181b396d4
https://medium.com/ai-insights-cobet/power-of-hypothetical-document-embeddings-an-in-depth-exploration-of-hyde-92601a335e5f
https://t.co/R3trgEb2JB
https://huggingface.co/blog/embedding-quantization


Advanced RAG, 1: RAG Fusion

● TLDR: Use LLM to generate multiple, distinct query rewrites, 
execute those queries in parallel, synthesize and rerank results

● Advantages
○ “bridge the gap between what users explicitly ask and what they 

intend to ask”
● Notes

○ Increased latency

● Ideal use cases
○ Ambiguous queries, specialized vocabularies

● Popular tools
○ OG opensource repo from Adrian H. Raudaschl (Python)
○ LLamaIndex: RAGFusionPipelinePack
○ LangChain: rag-fusion

https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
https://github.com/Raudaschl/rag-fusion
https://docs.llamaindex.ai/en/stable/api_reference/packs/rag_fusion_query_pipeline/
https://python.langchain.com/docs/templates/rag-fusion/


Advanced RAG, 1: RAG Fusion

Image by Adrian H. Raudaschl



Advanced RAG, 1: RAG Fusion

Reciprocal Rank Fusion Algorithm (courtesy of Elasticsearch)

```
score = 0.0
for q in queries:
    if d in result(q):
        score += 1.0 / ( k + rank( result(q), d ) )
return score
```

for each query,
if a relevant document is in its result set,
increase score by 1/ranking_constant + the document’s position

# k is a ranking constant (A higher value indicates that lower ranked documents have more influence)
# q is a query in the set of queries
# d is a document in the result set of q
# result(q) is the result set of q
# rank( result(q), d ) is d's rank within the result(q) starting from 1

Individual result sets can use diff ranking algos!



Advanced RAG, 2: Small-to-Big Retrieval
● TLDR: Retrieve small chunks from DB, use small chunks to retrieve larger chunks; send 

larger chunks to LLM as context
● Advantages

○ Optimize precision by fetching small chunks
○ Optimize contextual information passed to LLM via large chunks

● Notes
○ Requires more hands-on preprocessing of data

● Ideal use cases
○ Everything!

● Popular tools
○ LlamaIndex

■ Sentence Window Node Parser: Retrieve at the sentence level, expand chunk 
window. 

■ Recursive Retriever: Retrieve smaller chunk, reference the parent chunk.
○ LangChain:

■ Parent Document Retriever: Fetch the small chunks, look up the parent ids for those 
chunks and return the larger documents.

https://docs.llamaindex.ai/en/stable/examples/node_postprocessor/MetadataReplacementDemo/
https://docs.llamaindex.ai/en/stable/examples/retrievers/recursive_retriever_nodes/
https://python.langchain.com/docs/modules/data_connection/retrievers/parent_document_retriever/


Advanced RAG, 2: Small-to-Big Retrieval



The future of RAG

● More agentic RAG techniques
■ More Agents is All You Need (Feb ‘24) — Kinda like RAG Fusion, except with 

multiple instances of an LLM (agents); agents combine/vote for best answer

● Mixed retrieval
○ Retrieve from vector DB, keyword search engine, SQL DB, etc. & combine

● Auto-retrieval
○ Use LLM to infer set of metadata filters & pass rewritten query to external DB

● Evaluation frameworks
● Exciting things are happening right now!

○ RAFT: Retrieval Augmented Fine-Tuning (March ‘24)
■ Finetune an LLM to disregard any retrieved documents that do not contribute 

to answering a given question, thereby eliminating distractions. 
○ DSPy

■ Collection of “compilers” that build the perfect prompt for LLMs

https://arxiv.org/pdf/2402.05120v1.pdf
https://docs.llamaindex.ai/en/stable/examples/vector_stores/elasticsearch_auto_retriever/
https://arxiv.org/pdf/2403.10131.pdf
https://dspy-docs.vercel.app/docs/building-blocks/optimizers


Reranking
● TLDR: Reorder `k` documents from `n` originally retrieved documents

○ `n` documents retrieved by “first-pass” ranker, algorithm is optimized for recall
○ `k` reranked documents retrieved by more complex ranking algorithm

● Advantages
○ Targeted use of compute resources
○ Known-valuable technique to drastically increase relevance

● Notes
○ Increased latency
○ Implementing complex reranking algos requires strong technical knowledge
○ Reranking output is only as good as the first-pass ranker

● Ideal use cases
○ Search applications of any kind, as long as they have enough compute 

resources, where relevance is paramount
● Popular tools

○ Cohere (API)
○ RAGatouille (ColBERT)

https://txt.cohere.com/rerank-3/
https://github.com/bclavie/ragatouille


Reranking



Types of rerankers
● Cross-encoders (e.g. BGE)

○ Related to bi-encoders (dense retrieval), except cross-encoders vectorize its 2 
sentences simultaneously

○ Simultaneous embedding preserves relationships
○ Slow, but accurate; don’t scale well

● ‘Bag-of-embeddings’ Rerankers (e.g. ColBERT)
○ Uses transformer models (e.g. BERT), encode queries + docs into mult. 

embeddings
○ Late interaction architecture (vectors come from last output layer of model)
○ Doc-Query pair similarity measured by “Maximum Similarity” (MaxSim)

● LLMs (e.g. RankZephyr)
○ Use LLMs to identify similarity between query:document pairs

Image from Sumit Kumar



The future of reranking

● More dependence on LLMs for generating reranking schemas
○ March ‘24: Instruction-based Unsupervised Passage Reranking (InstUPR) — 

Use instruction-tuned LLM(s) to create reranking schemas
○ March ‘24: Hierarchy-Aware Reranking — Use taxonomic (hierarchical) 

graph of entities diversify and dedupe ranking results
○ Feb ‘24: ListT5 — List-wise reranking for zero-shot reranking that doesn’t 

incur huge computational cost, mitigates ‘lost in the middle’ problems
○ Jan ‘24: InRanker — Use LLM(s) to generate synthetic, labeled training data 

to fine-tuning

https://arxiv.org/pdf/2403.16435.pdf
https://arxiv.org/pdf/2403.06551.pdf
https://arxiv.org/pdf/2402.15838.pdf
https://arxiv.org/pdf/2401.06910.pdf


Fine-Tuning Pretrained Models
● TLDR: Customize already-great model for a specific use
● Advantages

○ Specialized for a specific task/domain
○ Adapts easily to tone, style and vocabulary as desired

● Notes
○ Have to re-fine-tune as information changes
○ Less generalizable, can be overfit if training data is too small
○ Need someone w/advanced ML skills to implement
○ Black box interpretability

● When to avoid
○ New task is orthogonal to pretrained model
○ Business domain/data is constantly changing

● Ideal use cases
○ When data is restricted and/or sensitive, e.g. medical field
○ When precision is very important
○ When specific brand tone, style matter

● Popular tools
○ HuggingFace
○ OctoML
○ PromptLayer
○ Together.AI
○ OpenAI

https://huggingface.co/docs/transformers/training
https://octo.ai/blog/the-beginners-guide-to-fine-tuning-stable-diffusion/
https://docs.promptlayer.com/why-promptlayer/fine-tuning
https://docs.together.ai/reference/fine-tuning-1
https://openai.com/blog/introducing-improvements-to-the-fine-tuning-api-and-expanding-our-custom-models-program


RAG and Fine-tuning
Why not both??
● RAG goal = accurate retrieval
● Fine-tuning goal = specific output
● Ideal use case: 

○ Any app that relies on external, dynamic data, but that also 
requires unique customization or domain expertise 

○ E.g.: chat assistant that needs to know most recent data, but 
also needs to serve it to end user in specific tone or format



Popular Methods of Fine-Tuning
● ⭐ Supervised

○ TLDR: Model understand what ‘correct’ answers look like
○ Need: pairs of high-quality, labeled data

● Reinforcement-Learning with Human Feedback
○ TLDR: Model decides what action to take based on 

feedback
○ Need: triples of state:action taken:feedback 

● Unsupervised
○ TLDR: Model (e.g. LLM) uses data itself as training, e.g. 

“masked language modeling”
○ Need: Unlabeled data

https://huggingface.co/docs/transformers/main/tasks/masked_language_modeling


The future of fine tuning
● Parameter-efficient fine 

tuning (PEFT, March ‘24)
○ Freeze the weights of OG 

model; add new weights; 
fine-tune new weights on a 
new training dataset.

○ E.g. Low-Rank Adaptation 
(LoRA)

● Representation fine-tuning 
(REFT, April ‘24)
○ Like PEFT, but edit weights 

instead of replace subset
● Prompt-oriented 

unsupervised fine-tuning 
(POUF, April ‘23)
○ Model figures out what you 

want it to do by you 
continuously giving it hints in 
the form of prompts

https://arxiv.org/abs/2403.14608
https://arxiv.org/pdf/2106.09685.pdf
https://arxiv.org/abs/2404.03592
https://arxiv.org/pdf/2305.00350.pdf


The future
is mixed



Mixed methods
● RAG + Reranking
● RAG + Fine-tuning
● RAG + Reranking + Fine-tuning
● Agentic methods that do all of this and more!
● Hybrid search, RAG, reranking, etc etc etc :infinity:

The art of search engineering is now the ability to 
know which techniques work for which use cases, 
and how to combine these techniques in a way 
that meets production demands.

+ Evals! 😊



Thank you!


