Women of Search Presents: Al-Driven Information Retrieval

24th April 2024

Audrey Lorberfeld

With contributions from Atita Arora, Erika Cardenas, and Meghan Boyd

Women of Search

- Founded 3 years ago, in May 2021
- 226 members strong 6
- A vibrant community dedicated to **empowering &** celebrating women in search & related tech fields
- Provide a platform for networking, mentorship, and knowledge-sharing

Group Updates

Updates

- 'Happy Hour' continues: the 1st Wednesday of each month at 9 am PT.
- Typescript Working Group, founded and led by Moon Limb (S. Korea)
- Research Paper Reading Club, founded and led by Obiamaka Agbaneje (Canada)



Member shout-outs

Obiamaka Agbaneje

Atita Arora

Erika Cardenas

Meghan Boyd

Moon Limb

Ashia Zawaduk

Elzbieta Jakubowska

Thank you, OSC

- 'Relevance & Matching Tech' Slack group:
 - Nearly 5k members
 - >129k messages sent in past 30 days
 - 88% of message-views in public channels in past 30 days
- Personally: 4 out of my 6 jobs in tech have come directly from relationships I have made via this Slack community
- My first suggestion for people interested in getting involved with search is to join this Slack workspace

Let's get into it

Core Areas of Information Retrieval

- Relevance
- Retrieval Models
- Indexing
- Query Processing
- Ranking
- Evaluation
- User Interaction

Core Areas of Information Retrieval

- Relevance
- Retrieval Models
- Indexing
- Query Processing
- Ranking
- Evaluation
- User Interaction

Al has been used in these areas before...

- 2013: Word2Vec released; FB incorporates graph search
- 2015: Google incorporates RankBrain; MSFT Bing incorporates neural nets
- 2018: BERT released
- 2022: ChatGPT released

So what's special about now?

Now, the pace of innovation has **exploded**.

With the advent of LLMs, AI has become an integral part of life for *everyday* people, not just academics and industry experts.

Nearly everyone in the world has now experienced the value-add of these technologies first-hand.

Collective **expectation** when information-seeking is to receive **immediate**, **relevant**, **factual** information in response to complex, ambiguous, and natural language questions.

Search engines using AI now

- <u>Andi</u>
- <u>Metaphor</u>
- <u>Brave</u>
- <u>YOU</u>
- Phind
- <u>Perplexity</u>
- <u>Kagi</u>
- <u>Komo</u>
- ...Then there are search engine-adjacent tools like <u>Gemini</u>, <u>Glean</u>, <u>Bing Copilot</u>, <u>Waldo</u>, <u>ChatGPT</u>, etc.
- More everyday!

Generative Al is cool, bro!!!!

Notoriously difficult IR techniques are now relatively easy

- Query intent identification
- Token/phrase disambiguation
- Query rewriting
- Multimodal search
- Metadata generation:
 - Document summarization
 - Keyword generation, etc.
- Advanced query stream analysis and segmentation

We are now living in an age in which **virtually no IR techniques are off the table**

Popular Al-Driven Information Retrieval Techniques

Popular Al-driven IR techniques

• **RAG: Retrieval Augmented Generation**

- Makes getting started with Al-driven IR incredibly easy
- Tons of frameworks out there to help you get started

• Reranking

- Great for domain-specific corpori
- Generally better than semantic search or lexical search by themselves
- Easy to integrate into an existing lexical search stack

• Fine-tuning

Can essentially customize an already-great retrieval model for your domain

RAG

• **TLDR:** Give an LLM access to information it would otherwise not know about

• Advantages

- Hardly any expert-level IR or ML knowledge necessary
- Easy to spin up e2e RAG apps, POCs
- Data can be in any format (not just vectors)
- Drastically lower probability of hallucinations

• Notes

- Since end product is generated, does not produce traditional IR outputs, e.g. ranked search results
- Beholden to LLM context window limitations

• Ideal use cases

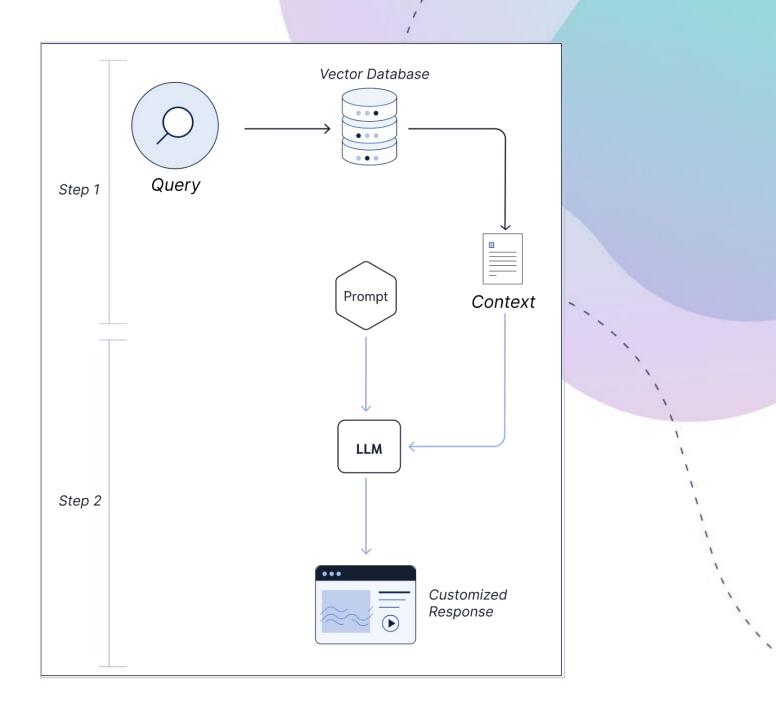
- Chatbots
- Q&A systems
- Code generation
- Personalization

• Popular tools

- <u>LlamaIndex</u>
- LangChain
- <u>Haystack</u>

RAG: How it works

- Intercept user query en route to LLM
- Send user query to DB
- Retrieve top `k` results
- Add those results to prompt that you send to LLM
- Bam! LLM now knows new information and uses it to answer the user query



Advanced RAG

- RAG Fusion
 - Use LLM to generate versions of user query & execute in parallel, synthesize and rerank results
- <u>Self-Reflective RAG</u>
 - LLM trained to retrieve (or not) on demand, and understand when retrieved context is irrelevant
- <u>Corrective RAG</u>
 - RAG w/a lightweight evaluator in the loop to throw out suboptimal context
- Agentic RAG
 - Category of RAG techniques that use agents (reasoning engines (LLMs) that execute instructions) to orchestrate retrieval
- <u>Small-to-Big Retrieval</u>
 - Use small chunks to grab larger, more semantically coherent chunks to send to LLM
- <u>RAG with HyDE</u>
 - (Hypothetical Document Embeddings) Use LLM to generate hypothetical answer to user query; answer is used to retrieve similar (real) answers as context
- <u>Chain of Abstraction</u>
 - Fine-tune an LLM to generate abstract reasoning chains w/placehodlers for real-world values; using external tools & sources to fill placeholders
- More fine-grained pre- and post-processing of context, e.g.:
 - Context reranking
 - <u>Vector quantization</u>

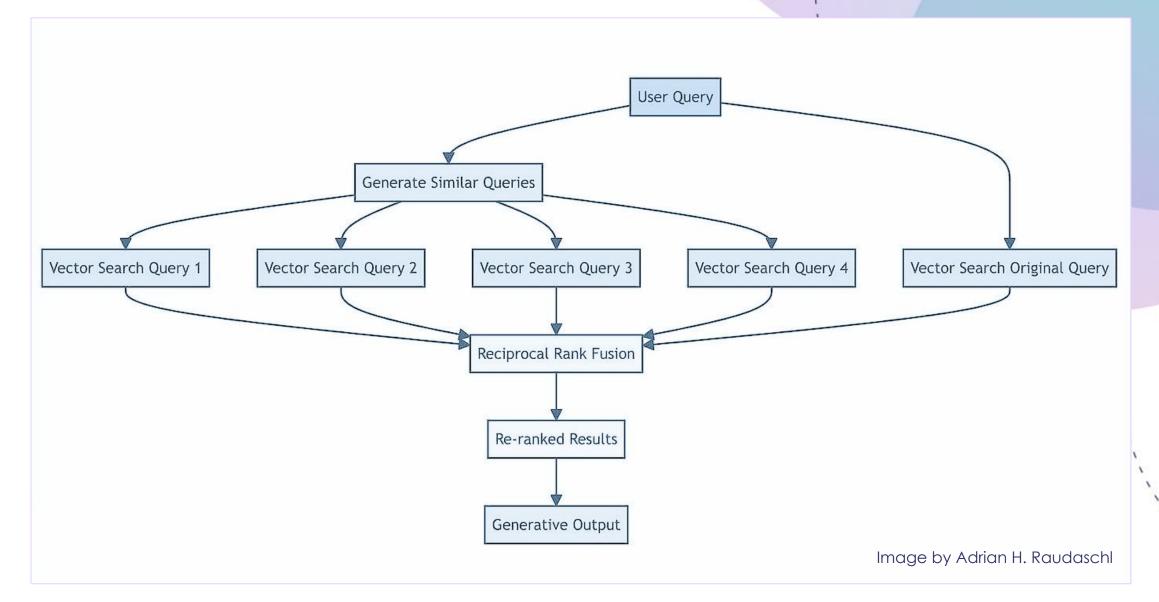
Advanced RAG, 1: RAG Fusion

- **TLDR**: Use LLM to generate multiple, distinct query rewrites, execute those queries in parallel, synthesize and rerank results
- Advantages
 - "bridge the gap between what users explicitly ask and what they intend to ask"
- Notes
 - Increased latency
- Ideal use cases
 - Ambiguous queries, specialized vocabularies

• Popular tools

- OG opensource repo from Adrian H. Raudaschl (Python)
- LLamaIndex: <u>RAGFusionPipelinePack</u>
- LangChain: <u>rag-fusion</u>

Advanced RAG, 1: RAG Fusion



Advanced RAG, 1: RAG Fusion

Reciprocal Rank Fusion Algorithm (courtesy of Elasticsearch)

```
score = 0.0
for q in queries:
    if d in result(q):
        score += 1.0 / ( k + rank( result(q), d ) )
return score
```

* * *

for each query, if a relevant document is in its result set, increase score by 1/ranking_constant + the document's position

k is a ranking constant (A higher value indicates that lower ranked documents have more influence)
q is a query in the set of queries
d is a document in the result set of q
result(q) is the result set of q
rank(result(q), d) is d's rank within the result(q) starting from 1

Individual result sets can use diff ranking algos!

Advanced RAG, 2: Small-to-Big Retrieval

• **TLDR:** Retrieve small chunks from DB, use small chunks to retrieve larger chunks; send larger chunks to LLM as context

Advantages

- Optimize precision by fetching small chunks
- Optimize contextual information passed to LLM via large chunks

• Notes

• Requires more hands-on preprocessing of data

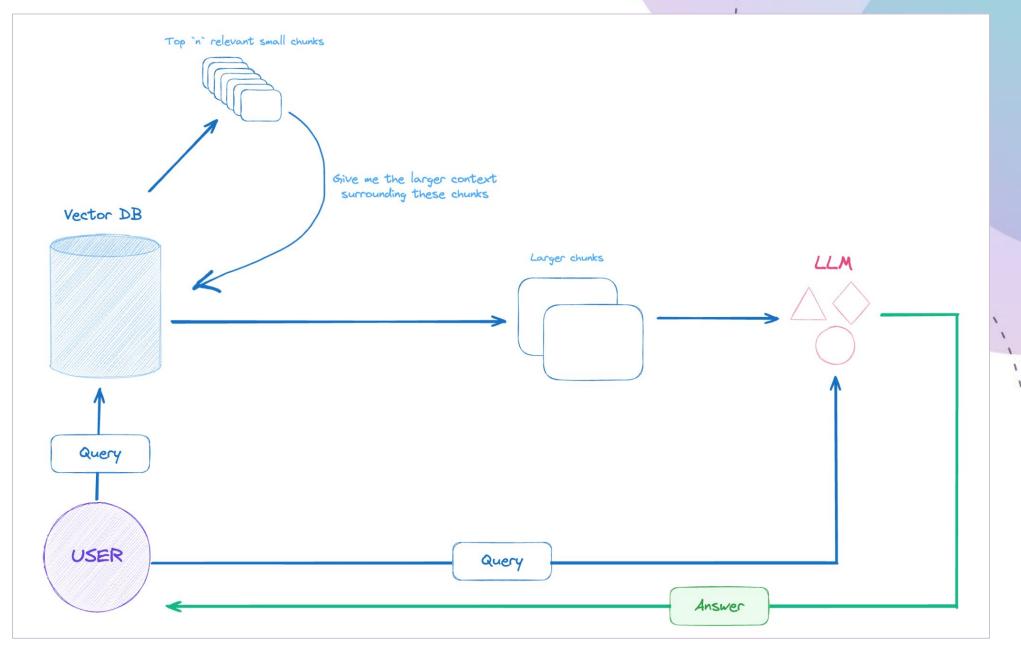
Ideal use cases

• Everything!

• Popular tools

- LlamaIndex
 - Sentence Window Node Parser: Retrieve at the sentence level, expand chunk window.
 - Recursive Retriever: Retrieve smaller chunk, reference the parent chunk.
- LangChain:
 - Parent Document Retriever: Fetch the small chunks, look up the parent ids for those chunks and return the larger documents.

Advanced RAG, 2: Small-to-Big Retrieval /



The future of RAG

- More agentic RAG techniques
 - More Agents is All You Need (Feb '24) Kinda like RAG Fusion, except with multiple instances of an LLM (agents); agents combine/vote for best answer
- Mixed retrieval
 - Retrieve from vector DB, keyword search engine, SQL DB, etc. & combine
- <u>Auto-retrieval</u>
 - Use LLM to infer set of metadata filters & pass rewritten query to external DB
- Evaluation frameworks
- Exciting things are happening right now!
 - <u>RAFT: Retrieval Augmented Fine-Tuning</u> (March '24)
 - Finetune an LLM to disregard any retrieved documents that do not contribute to answering a given question, thereby eliminating distractions.
 - o <u>DSPy</u>
 - Collection of "compilers" that build the perfect prompt for LLMs

Reranking

- **TLDR:** Reorder `k` documents from `n` originally retrieved documents
 - `n` documents retrieved by "first-pass" ranker, algorithm is optimized for recall
 - `k` reranked documents retrieved by more complex ranking algorithm

• Advantages

- Targeted use of compute resources
- Known-valuable technique to drastically increase relevance

• Notes

- Increased latency
- Implementing complex reranking algos requires strong technical knowledge
- Reranking output is only as good as the first-pass ranker

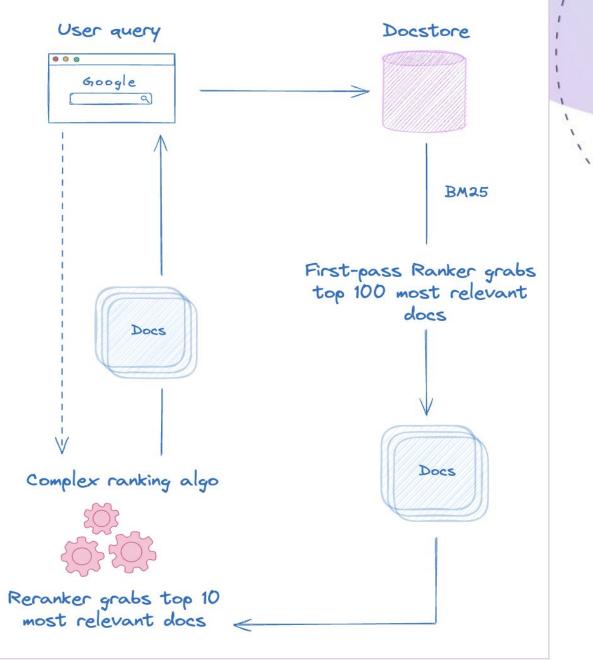
Ideal use cases

 Search applications of any kind, as long as they have enough compute resources, where relevance is paramount

• Popular tools

- o <u>Cohere</u> (API)
- <u>RAGatouille</u> (ColBERT)

Reranking



Types of rerankers

• Cross-encoders (e.g. BGE)

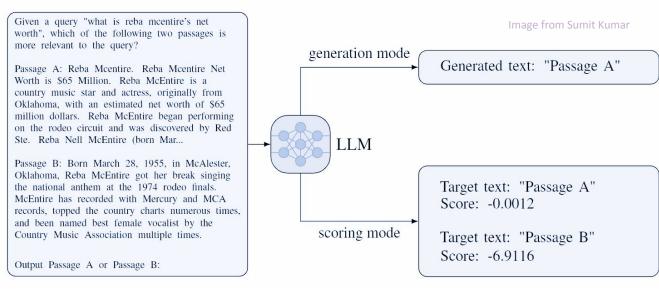
- Related to bi-encoders (dense retrieval), except cross-encoders vectorize its 2 sentences simultaneously
- Simultaneous embedding preserves relationships
- Slow, but accurate; don't scale well

'Bag-of-embeddings' Rerankers (e.g. ColBERT)

- Uses transformer models (e.g. BERT), encode queries + docs into mult. embeddings
- Late interaction architecture (vectors come from last output layer of model)
- Doc-Query pair similarity measured by "Maximum Similarity" (MaxSim)

• LLMs (e.g. RankZephyr)

Use LLMs to identify similarity between query:document pairs



The future of reranking

- More dependence on LLMs for generating reranking schemas
 - March '24: Instruction-based Unsupervised Passage Reranking (InstUPR) Use instruction-tuned LLM(s) to create reranking schemas
 - March '24: <u>Hierarchy-Aware Reranking</u> Use taxonomic (hierarchical) graph of entities diversify and dedupe ranking results
 - Feb '24: <u>ListT5</u> List-wise reranking for zero-shot reranking that doesn't incur huge computational cost, mitigates 'lost in the middle' problems
 - Jan '24: <u>InRanker</u> Use LLM(s) to generate synthetic, labeled training data to fine-tuning

Fine-Tuning Pretrained Models

TLDR: Customize already-great model for a specific use

Advantages

- Ο
- Specialized for a specific task/domain Adapts easily to tone, style and vocabulary as desired

Notes

- Have to re-fine-tune as information changes Less generalizable, can be overfit if training data is too small Need someone w/adyanced ML skills to implement Ο
- Ο
- Black box interpretability
 When to avoid

- New task is orthogonal to pretrained model Business domain/data is constantly changing

Ideal use cases

- When data is restricted and/or sensitive, e.g. medical field When precision is very important When specific brand tone, style matter
- Ο
- Ο

Popular tools

- HuggingFace Ο
- OctoML Ο
- <u>PrompfLayer</u> Ο
- Together.A Ο
- OpenAl Ο

RAG and Fine-tuning

Why not both??

- RAG goal = accurate retrieval
- Fine-tuning goal = specific output
- Ideal use case:
 - Any app that relies on external, dynamic data, but that also requires unique customization or domain expertise
 - E.g.: chat assistant that needs to know most recent data, but also needs to serve it to end user in specific tone or format

Popular Methods of Fine-Tuning

• 🔶 Supervised

- **TLDR:** Model understand what 'correct' answers look like
- Need: pairs of high-quality, labeled data

Reinforcement-Learning with Human Feedback

- TLDR: Model decides what action to take based on feedback
- **Need:** triples of state:action taken:feedback

• Unsupervised

- TLDR: Model (e.g. LLM) uses data itself as training, e.g.
 "masked language modeling"
- Need: Unlabeled data

The future of fine tuning

- Parameter-efficient fine tuning (<u>PEFT</u>, March '24)
 - Freeze the weights of OG model; add new weights; fine-tune new weights on a new training dataset.
 - E.g. Low-Rank Adaptation (LORA)
- **Representation fine-tuning** (<u>REFT</u>, April '24)
 - Like PEFT, but edit weights instead of replace subset
- Prompt-oriented unsupervised fine-tuning (<u>POUF</u>, April '23)
 - Model figures out what you want it to do by you continuously giving it hints in the form of prompts

• • •	platform.openai.	com			
3	Fine-tuning				
Playground	All Successful Failed		Learn more + Create		
Assistants					
Threads	ft:gpt-4-002:openai::98EFl1DA	ft:gpt-4-002:openai::98EFI1DA			
Fine-tuning	ft:gpt-3.5-turbo-0613:openai::99KAKtbC	③ Status Succeeeded	~ <u>G</u>		
API keys	ft:gpt-4-0125-preview-8s-alpha:openai:128k-50ex:94hRx	Base model GTP 3.5 Turbo			
3 Storage		Suffix ssql-1st			
D Usage	ft:gpt-3.5-turbo-0613:openai:tmtest:94VnrJDd	⑦ Created at 8/24/2023, 2:3	37 PM		
3 Settings		88 Trained tokens 138,392			
		C Epochs 4			
		 Snapshots ft:gpt-4-8s-alpha:step-100 ft:gpt-4-8s-alpha:step-100 			
				ft:gpt-4-8s-alpha:step-200	
		🗅 Training files			
		Training filename2.csv Validation validation_set.csv Training loss 0.52			
				5	
					$\Psi_{i+1}(z) = (1 - z)$ $(1 - z)$ $(1 - z)$

The future is mixed

Mixed methods

- RAG + Reranking
- RAG + Fine-tuning
- RAG + Reranking + Fine-tuning
- Agentic methods that do all of this and more!
- Hybrid search, RAG, reranking, etc etc etc :infinity:

The art of search engineering is now the ability to know which techniques work for which use cases, and how to combine these techniques in a way that meets production demands.

+ Evals! 😊

Thank you!

