
Learning to Rank @ Reddit



It Us

Doug Turnbull Chris Fournier Cliff Chen

2

http://softwaredoug.com 
http://reddit.com/u/softwaredoug 

http://softwaredoug.com
http://reddit.com/u/softwaredoug


3

Today’s Topic
How do we add 
Learning to Rank to an 
existing, mostly 
working, high scale 
search system?



Reddit Search information?

First glance: classic, text-heavy informational search 



… but with a social twist Breaking news searches, ie “key bridge collapse”

Care about recency /
 popularity

Classic “what’s the 
absolute latest on this 

topic” information need



…  and sometimes very personal

Reddit is a massive repository of 
subjective human experience

(This is the big ‘add Reddit to your Google search’ use case)



Future hybrid search system

LTR 
(many lexical features)

Vector Search 
(embedding index 
for post body/title) 

Interleaving / Rank 
Fusion

Lexical Retrieval 
Candidates

(handful of ranking 
features)

Today’s Talk



📎
LTR over ‘lexical’ - Why do we care?

��
Mr. ML Model

👀

Hi! I’m 

Mr. ML Model! 

It looks like 
you’re trying to 
optimize your 

search 
relevance!



📎
Training Data

��
Mr. ML Model

👀
First, give me 

some examples 
of relevant / 

irrelevant 
search results

Query Post ID Rel?

Key bridge 1234 1

Key bridge 5678 0

Golden retrieval 
travel anxiety

12412 1

(are these any good!?)



📎
Features

��
Mr. ML Model

👀
Second, give 

me some 
information 

about query / 
posts so I can 

see the patterns

● Did the title match the 
keywords?

● What was the BM25 
score of the body?

● How recent was it?
● Did the subreddit 

match the query?
● …
● ?

(do these predict relevance!?)



📎
Inference

��
Mr. ML Model

👀
Oh I’ve learned 

a lot!
Third, put me 
somewhere I 

can rank search 
results

Production

YEET!

Reranked 
results

Retrieved results + 
features



📎
Answering Mr. ML Models questions as a 
forcing function

��
Mr. ML Model

👀💩 
Training Data

💩 
Features

💩 
Garbage 
results



📎
Answering Mr. ML Models questions as a 
forcing function

��
Mr. ML Model

👀🎂 
Training Data

😍
Features



… Even without Mr. ML Model

🎂 
Training Data

😍
Features

🤓🔨 
(hand tuned features to meet training data in tool like Quepid)



Training Data + 
Feature 
Selection



Having any idea 
WTF we’re doing 
in offline eval

Train 
LTR 
model

95% of time spent

Learning to Rank, in a 
nutshell

5% of time spent Doug, having no idea 
what he’s doing, until 
we run more real 
experiments in search 
bench



Training Data - started with human eval

👍

👎

👍

Hand labeled results (~1000 queries, 20 per query, head and tail 
queries)

q=zoolander

Zoolander 2 Trailer

Meet my puppy name “Zoolander”

I love the part where he does “Magnum”



… To derive “engagement judgments”

Position

Click

Click + dwell

0.05

0.05

0.9

Relative weights

🤓 - Good sign!

Human labelers 
agree w/ click+dwell

(30 / 60 day sums)



Next steps - USE the judgments 

(Offline Experiments)

(test 
search 
stack)

NDCG go up?
Ship to A/B!

PROD

🤓🔨 
(manual relevance
 tuning at retrieval)

Agreement with 
offline? 

👍 Generally good!



… And train w/ judgments

(Offline Experiments)

(test 
search 
stack)

NDCG go up?
Ship to A/B!

PROD

Agreement with 
offline? 

📎��👀
YEET!



📎
… Training w/ judgments

��
Mr. ML Model

👀
Query Post ID Rel? Title Match?

Key bridge 1234 1 1

Key bridge 5678 0 1

Golden retrieval travel 
anxiety

12412 1 1

PROBLEM - engagement based judgments have SOME 
relationship to document!

(even irrelevant ones) - why?



… We sample other queries for negative labels

Query Post ID Rel? Title Match?

Key bridge 1234 1 1

Key bridge 5678 0 1

Key bridge 12412 0 0

Golden retrieval travel 
anxiety

12412 1 1
Inject as 
irrelevant 

(Inject some N random other query labels as negative for each 
query)



Mr. ML Model can see the patterns better

Query Post ID Rel? Title Match?

Key bridge 1234 1 1

Key bridge 5678 0 1

Key bridge 12412 0 0

Golden retrieval travel 
anxiety

12412 1 1

📎��
Mr. ML Model

👀

I see now:

no title match 
== maybe 
irrelevant



How to choose features?

Training Data ✅

Features ⁇

📎��
Mr. ML Model

👀

FEED ME good 
features to learn 

relevance 
patterns



Features often heavily correlated in LTR

x x

x

x

x

x x

Body BM25

Title 
BM25

(Strong correlation) 🫤



Good features add information

x x

x

x

x

x x

Num Votes

Title 
BM25

(No correlation) 👍
x

x x

x

x x



Analyze via correlation matrix



Analyze via correlation matrix

Votes / Num Comments Correlate, 
don’t add much new info relative to 
each other



Analyze via correlation matrix

But add quite a bit on top of 
these features

(hrs 
ago)

Title 
BM25



Goal: find INDEPENDENT features, that IMPROVE model

Feature adds value when:

1. Orthogonal to other 
features

2. Improves model
3. Is readily accessible 

and computationally 
feasible to compute



How to choose features?

Training Data ✅

Features ✅📎��
Mr. ML Model

👀

Model architecture:

Lots of Choices, main requirements:
● Listwise / pairwise loss function
● Handle non-linear and correlated 

features

We chose 
● LambdaMART loss
● Deep learning model



Yeeting 
Features + 
Models to 
Prod



Choosing Solr LTR Plugin

(Lexical)
Feature Calculation + Model 
Inference

Solr
LTR

Solr functionality for 

● Feature calculation
● Top N Reranking



Pros / Cons Solr LTR vs Reddit extra
Solr LTR Reddit’s existing ML infra

Query-dependent features? Yes Not easily

Exists (at Reddit?) No Yes

Time horizon of content ~19 years 90 days

Features available Minimal Extensive

Network hops None Several

Types of models Limited Extensive

Model store size ~1MB* Unbounded

Vertical scalability Shared with Solr Unshared

🧐 Which to choose?



Solr LTR Plugin

Solr
LTR

Solr LTR - Reference Guide

Feature Store + Logging 

IE From Zero to Solr LTR:

MY_EFI_FEATURE_STORE

[
  {
    "store" : "my_efi_feature_store",
    "name" : "tfidf_sim_a",
    "class" : "org.apache.solr.ltr.feature.SolrFeature",
    "params" : { "q" : "{!dismax qf=text_tfidf}${keywords}" }
  },
  {
    "store" : "my_efi_feature_store",
    "name" : "tfidf_sim_b",
    "class" : "org.apache.solr.ltr.feature.SolrFeature",
    "params" : { "q" : "{!dismax qf=text_tfidf}${keywords}" }
  },

Solr Query DSL

https://solr.apache.org/guide/solr/latest/query-guide/learning-to-rank.html
https://github.com/airalcorn2/Solr-LTR


Training Time

Solr
LTR

Keyword “football” posts: 1234, 5678, 1010

fl=[features store=my_efi_feature_store efi.keywords=’football’]&
fq=id:1234 OR id:5678 OR id:1010

[
  {
     “id”: 1234,
     “[features]”: “tfidf_sim_a=1.56,...”    
  },
  {
     “id”: 5678,
     “[features]”: “tfidf_sim_a=0.05,...”    
  },
  …

(training examples for docs 1234… , 
… for query ‘football’)



Store model for inference

Solr
LTR

Model: foo

Store: my_efi_feature_store



Inference Time

Solr
LTR

rq={!ltr model=foo-model efi.keywords=’football’]&
… (normal retrieval query)

[
  {
     “id”: 1234,
     “[features]”: “tfidf_sim_a=1.56,...”    
  },
  {
     “id”: 5678,
     “[features]”: “tfidf_sim_a=0.05,...”    
  },
  …

(Features Computed internal to Solr)

To model

Top N to rerank:



Inference Time

rq={!ltr model=foo-model efi.keywords=’football’]&
… (normal retrieval query)

[
  {
     “id”: 1234,
     “[features]”: “tfidf_sim_a=1.56,...”    
  },
  {
     “id”: 5678,
     “[features]”: “tfidf_sim_a=0.05,...”    
  },
  …

(Features Computed internal to Solr)

To model

Top N to rerank:

🧠
Rerank



Our search infra

Solr 
Cloud

Search Svc

Queries / 
Resp

Solr Queries / 
Resp



Our search infra: build in isolation or production cluster?

Search Svc

Queries / 
Resp

Solr Queries / 
Resp

Production 
cluster

Isolated
LTR cluster



Pros / Cons
Isolated Single cluster

Implementation speed Need to add a new cluster Already built!

Development isolation Build/ iterate fast 
independently of other work

Slower b/c of need to 
integrate with other work

Safety Faults don’t cascade Faults affect prod traffic

Experiment confounders Different latencies Same latency in prod and 
experiment

Operational cost One more cluster to 
maintain

Maintain two use cases in 
same cluster

$$$ One more cluster to buy 
(non-trivial cluster cost)

Vertically scale existing 
cluster slightly

🧐 Which to choose?



Take 1: single cluster

Search Svc
Solr Queries 
Responses

Queries /
Response

Production + 
LTR cluster



Take 1: Envoy for Shadow Traffic (Single Cluster)

Shadow Pods
Shadow Pods

Queries /
Response

Solr Queries 
Responses Production + 

LTR cluster
Envoy 
Proxy

Search Svc
Search Svc

Solr Queries 
Responses



Problems with co-location

Shadow Pods
Shadow Pods

Queries /
Response

Solr Queries 
Responses Production + 

LTR cluster
Envoy 
Proxy

Search Svc
Search Svc

Solr Queries 
Responses



Problems with co-location

Shadow Pods
Shadow Pods

Queries /
Response

Solr Queries 
Responses Production + 

LTR cluster
Envoy 
Proxy

Search Svc
Search Svc

Solr Queries 
Responses



Take 2: Isolated clusters

Shadow Pods
Shadow Pods

Queries /
Response

Solr Queries 
Responses

LTR cluster

Envoy 
Proxy

Search Svc
Search Svc

Solr Queries 
Responses

Production 
cluster



User-level Testing w/ traffic splitting

Queries /
Response

90%

LTR clusterSearch Svc
Search Svc

10%

Production 
cluster





+
+ Learning to 

Rank



Solr
LTR

1. Retrieval (get top N docs per shard )

2. Re-rank (all N x shards docs)

a. Features computed/queried

title:${keywords}
body:${keywords}
title_phrase:”{$keywords}”

b. Mr. ML Model interprets features

3. Return re-ranked results

📎��👀



Scaling up …

Traffic starts
increasing



Scaling up … and running into failures

Traffic starts
increasing

Death spiral 
starts

Manual 
intervention

(load shedding)



Garbage Collection time spent

Traffic starts
increasing

Death spiral 
starts

Manual 
intervention

(load shedding)



Time spent in Garbage Collection

Traffic starts
increasing

Death spiral 
starts

Manual 
intervention

(load shedding)





Garbage Collection time spent (smaller jump)

Traffic increased from 
5% to 10%



Garbage Collection time spent (smaller jump)

Traffic increased from 
5% to 10%



The caches look funny…

Traffic increased from 
5% to 10%

Traffic increased from 
5% to 10%



The caches look funny…

Traffic increased from 
5% to 10%



What do our features look like? Do they cache?

        {
            "name": "title_match_all_terms",
            "store": "LTR_TRAINING",
            "class": "org.apache.solr.ltr.feature.SolrFeature",
            "params":
            {
                "fq":
                [
                    "{!edismax qf=title mm=100% v=\"${keywords}\"}"
                ]
            }
        },

…

Should this be cached? 
Should we set cache=false ?



Let’s test a few configurations

On Re-rank with no changes

Off No re-ranking

OnNoFQ Re-rank without FQ features

OnNoCache Re-rank with non-cached FQ 
features (cache=false)



Garbage Collection time spent

On + traffic increased 
from 5% to 10%

Changed 
configsOff On

NoFQ
On

NoCache



Caching reactions

On + traffic from 
5% to 10%

OffOn
NoFQ

On + traffic 5% 
to 10%

On
NoFQ

On
NoCache

Off
On

NoCache



Caching hit rate increased
On + traffic from 

5% to 10% OnNoFQOff
OnNo 
Cache



Latency stabilized!

On + traffic increased  
from 5% to 10%

Changed 
configs

Off
On

NoFQ
OnNo
Cache



Tuning takeaways

GC performance is important for Solr stability

Avoiding unnecessary work to optimize performance

LTR features can be expensive



Yeet to to the 
moon!

(next steps)



All is well, until…

(PLATEAU OF 
DESPAIR)

OFFLINE SAID THESE 
SHOULD WIN!

(A/B Tests LTR vs control …)



Revisit labels

🤓🔨 
Manual relevance 

📎🧠👀

● Some qualitative analysis, 
more human in the loop

● Weighted avg: NDCG + LGTM

● Can eyeball different types of 
queries and LGTM

● Model only as smart (or dumb) 
as labels

● 100% NDCG

● Examples MUST be weighted 
by frequency

LTR (Mr. ML Model)

Must be accurate 100% of the timeCan be accurate ~80-90% of the time



Social search problem - very very changing SERPs

Compared to e-commerce, 
etc

SERPS change 

A LOT!

-> Aggregated labels don’t 
reflect actual SERPs



Currently
Human -> Analytic labels

~Avg Click+Dwell 
over N days

SERP ID DATE User Id Query Rank Doc ID Click+Dwe
ll?

1234 2 days 
ago

u_124 zoolander 0 abcd 0

1234 2 days 
ago

u_124 zoolander 1 1212 1

Multiple SERP analytics events Aggregated to:

SERP ID DATE User Id Query Rank Doc ID Click+Dwe
ll?

1251 25 days 
ago

u_110 zoolander 0 1211 0

1251 25 days 
ago

u_124 zoolander 1 12ab 1

…

📎🧠👀
Train



Use SERP directly to train?

SERP ID DATE User Id Query Rank Doc ID Click+Dwe
ll?

1234 2 days 
ago

u_124 zoolander 0 abcd 0

1234 2 days 
ago

u_124 zoolander 1 1212 1

SERP ID DATE User Id Query Rank Doc ID Click+Dwe
ll?

1251 25 days 
ago

u_110 zoolander 0 1211 0

1251 25 days 
ago

u_110 zoolander 1 12ab 1

Benefits:
● Implicitly weighted
● Handle Changing SERPs
● Features logged at point 

of search
● Can train on ALL context

x 100K ? 1m?

📎🧠👀

Downsides:
● Need to feature log 

every search
● A lot more data!



Feature Eng - Signals

Trending / recent posts that get engagement for a query

query post boost

ace ventura 6785 1.2

zoolander 1234 1.5

zoolander 5678 1.1



Pros / Cons Signals vs an LTR model

🫣 Signals:

“OVERFIT” - not generalized, 
but a great cheat-sheet for ‘right 
answer’, but only for queries 
seen in past

Good for fast changing head 
queries

🤓 - Model:

“GENERALIZED” - not overfit, 
general “pattern” can work with 
query seen rarely / never

Good for torso+tail / not as 
engaging queries



Signals cover A LOT of the search traffic

🫣 Signals:

“OVERFIT” - not generalized, 
but a great cheat-sheet for ‘right 
answer’, but only for queries 
seen in past

Good for fast changing head 
queries

🤓 - Model:

“GENERALIZED” - not overfit, 
general “pattern” can work with 
query seen rarely / never

Good for torso+tail / not as 
engaging queries

These cover WAY 
more of the 

search traffic than 
expected



Need to add these to our model

🧠 
General 
Model

📈
Signals as LTR 

features

Retrieval

(simple features / 
ranking)

(complex features / 
ranking)

Ideal mix of signal + 
lexical



Thank you


