Learning to Rank @ Reddit

It Us

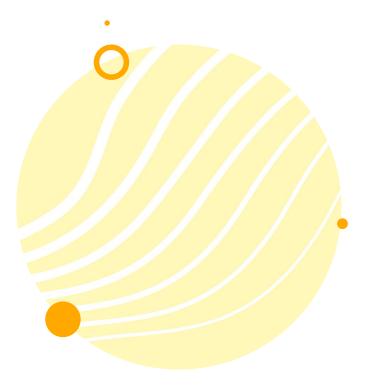
Doug Turnbull

http://softwaredoug.com http://reddit.com/u/softwaredoug

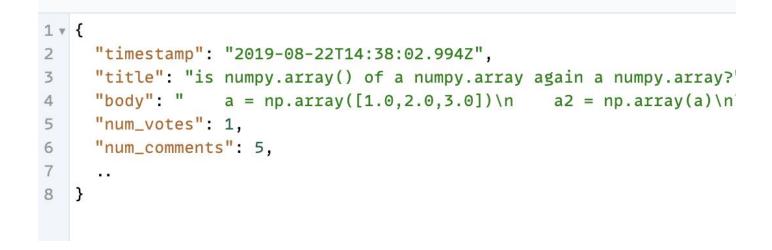
Chris Fournier

Cliff Chen

<u>Today's Topic</u> How do we add Learning to Rank to an existing, mostly working, high scale search system?



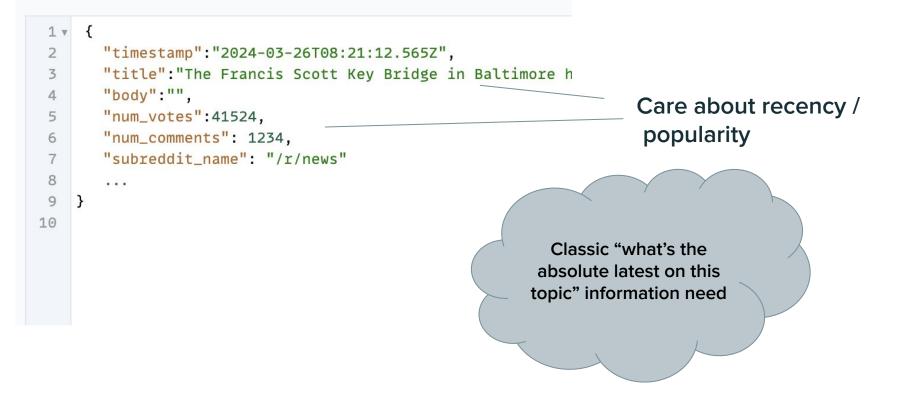
Reddit Search information?



First glance: classic, text-heavy informational search

... but with a social twist

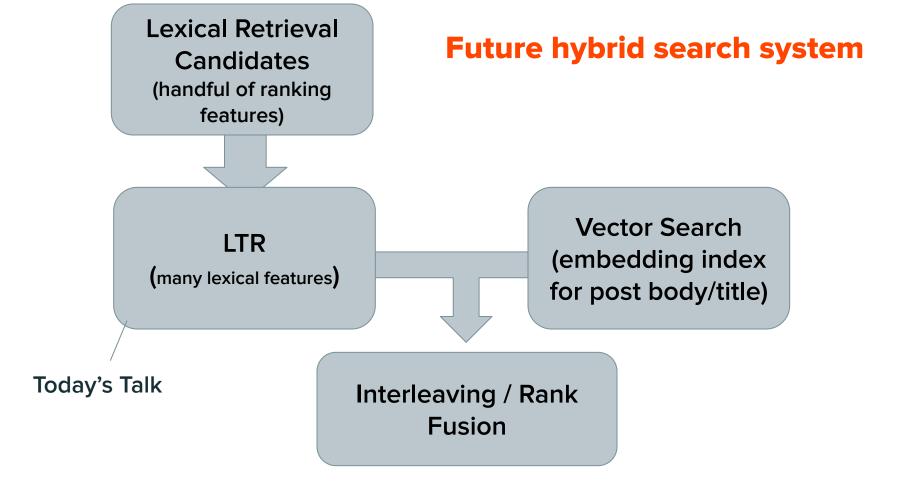
Breaking news searches, ie "key bridge collapse"



... and sometimes very personal

```
1 - {
2
     "timestamp":"2024-02-22T17:18:24.789Z",
3
     "title": "Travel anxiety help",
     "body": "Looking for potential suggestions besides RX medications to help
4
5
     "num_votes":458,
6
     "subreddit_name": "/r/goldenretrievers",
7
     . .
8
9
                     Reddit is a massive repository of
                     subjective human experience
```

(This is the big 'add Reddit to your Google search' use case)



LTR over 'lexical' - Why do we care?

Mr. ML Model!

Hi! I'm

It looks like you're trying to optimize your search relevance!

Mr. ML Model

Training Data

Query	Post ID	Rel?
Key bridge	1234	1
Key bridge	5678	0
Golden retrieval travel anxiety	12412	1

First, give me some examples of relevant / irrelevant search results

(are these any good!?)

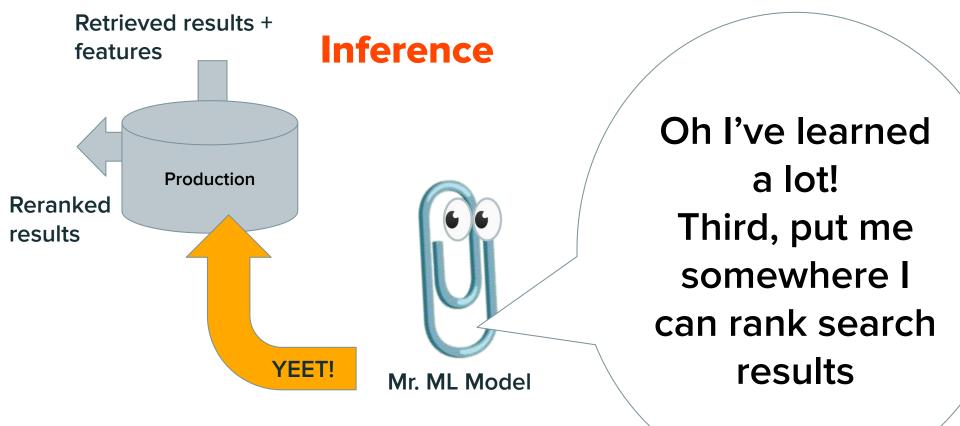
Features

- Did the title match the keywords?
- What was the BM25 score of the body?
- How recent was it?
- Did the subreddit match the query?

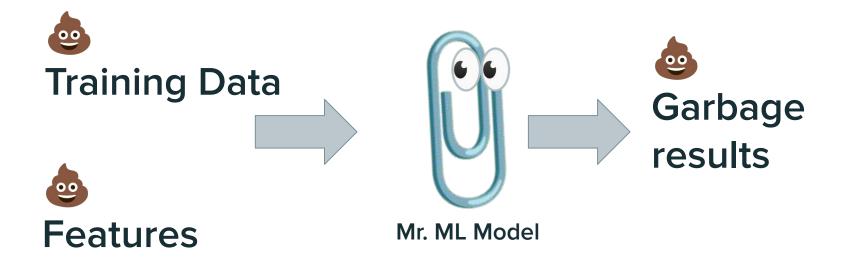
Mr. ML Model

Second, give me some information about query / posts so I can see the patterns

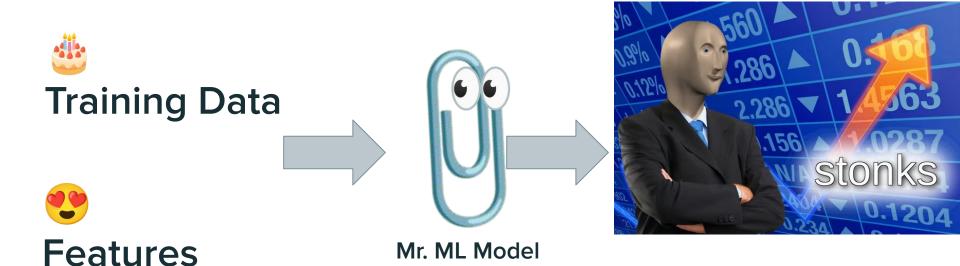
(do these predict relevance!?)



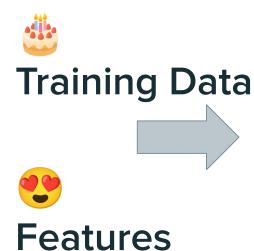
Answering Mr. ML Models questions as a forcing function

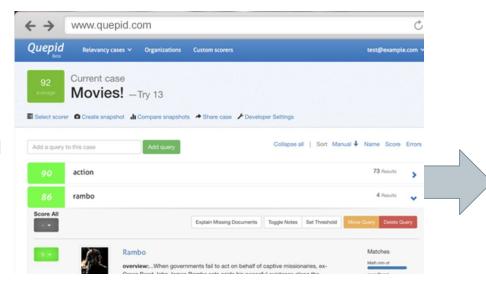


Answering Mr. ML Models questions as a forcing function



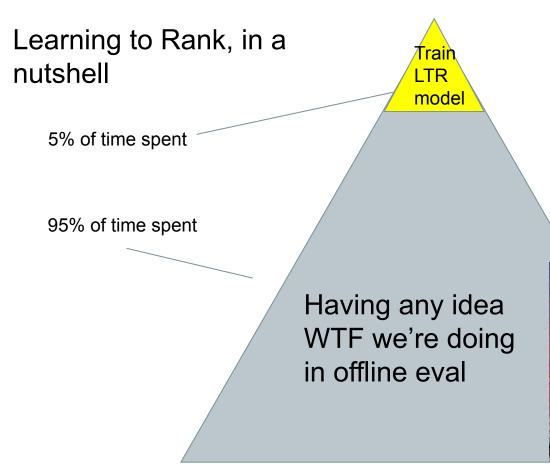
... Even without Mr. ML Model





(hand tuned features to meet training data in tool like Quepid)

Training Data + Feature Selection



Doug, having no idea what he's doing, until we run more real experiments in search bench

Training Data - started with human eval

Hand labeled results (~1000 queries, 20 per query, head and tail queries)

q=zoolander

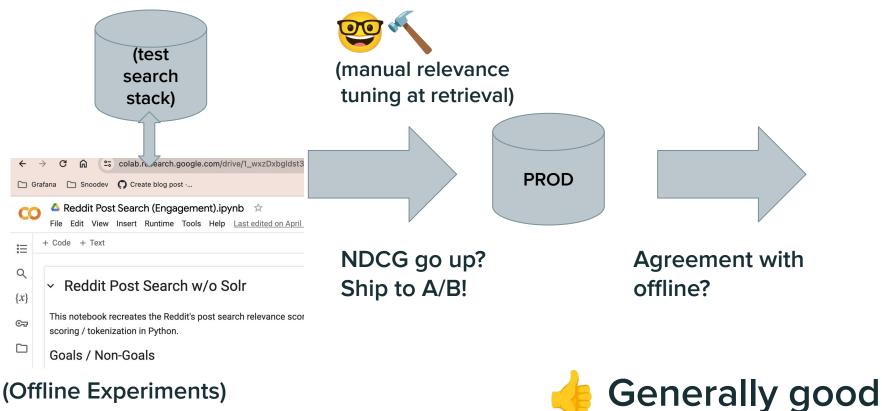
Zoolander 2 Trailer

Meet my puppy name "Zoolander"

I love the part where he does "Magnum"

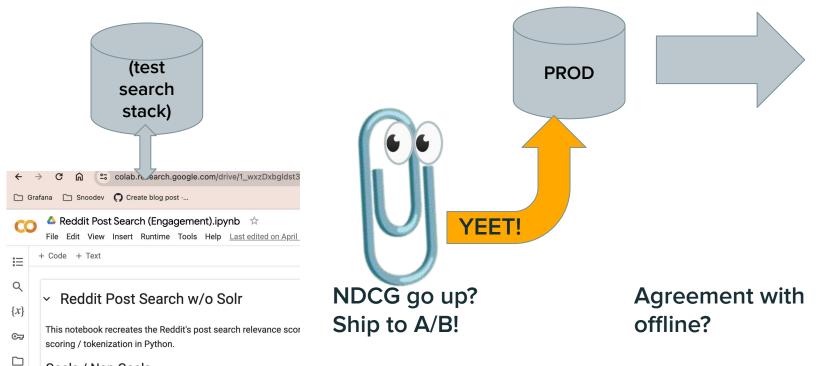
... To derive "engagement judgments"

Next steps - USE the judgments



(Offline Experiments)

... And train w/ judgments



Goals / Non-Goals

(Offline Experiments)

... Training w/ judgments

Query	Post ID	Rel?	Title Match?	
Key bridge	1234	1	1	
Key bridge	5678	0	1	
Golden retrieval travel anxiety	12412	1	1	M

PROBLEM - engagement based judgments have SOME relationship to document!

(even irrelevant ones) - why?

... We sample other queries for negative labels

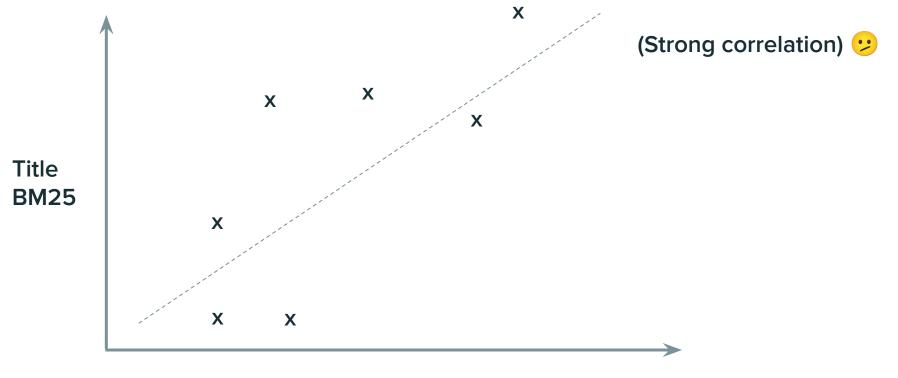
	Query	Post ID	Rel?	Title Match?
	Key bridge	1234	1	1
	Key bridge	5678	0	1
Inject as	Key bridge	12412	0	0
irrelevant	Golden retrieval travel anxiety	12412	1	1

(Inject some N random other query labels as negative for each query)

Mr. ML	. Model can	see the pat	terns better I see now: <i>no title match</i>
Post ID	Rel?	Title Match?	== maybe irrelevant
1234	1	1	
5678	0	1	
12412	0	0	
12412	1	1	Mr. ML Model

How to choose features? FEED ME good features to learn relevance Training Data 🔽 patterns Features ?? Mr. ML Model

Features often heavily correlated in LTR

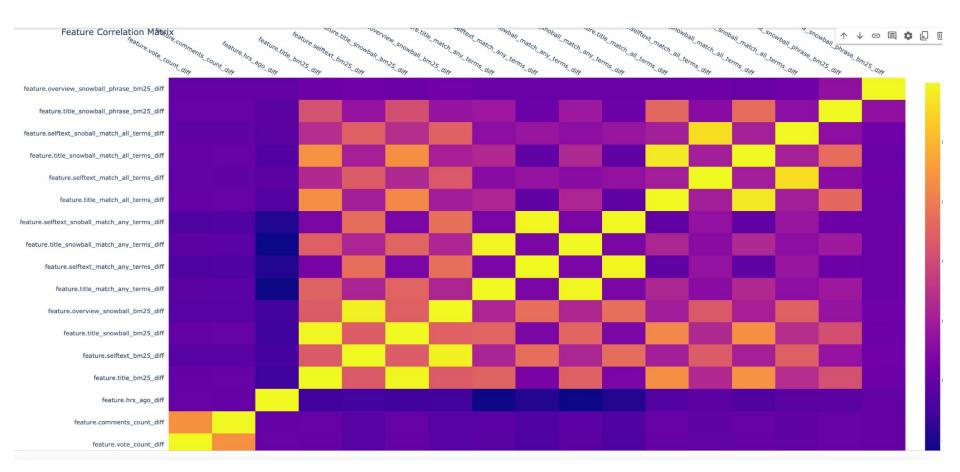


Body BM25

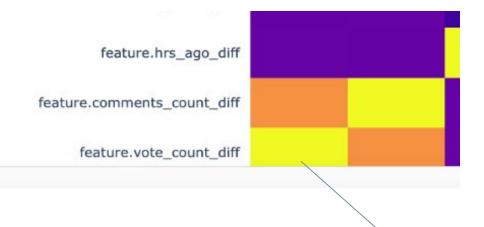
Good features add information

Num Votes

Analyze via correlation matrix



Analyze via correlation matrix

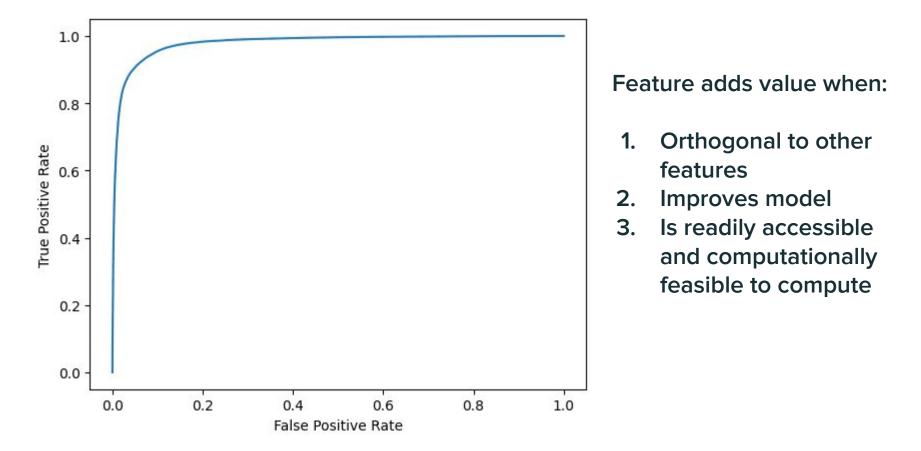


Votes / Num Comments Correlate, don't add much new info relative to each other

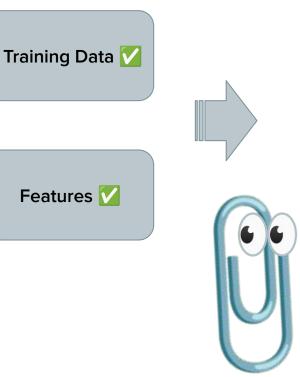
Analyze via correlation matrix

But add quite a bit on top of these features

Goal: find INDEPENDENT features, that IMPROVE model



How to choose features?



Model architecture:

Lots of Choices, main requirements:

- Listwise / pairwise loss function
- Handle non-linear and correlated features

We chose

- LambdaMART loss
- Deep learning model

Mr. ML Model

Yeeting Features + Models to Prod

Choosing Solr LTR Plugin

Solr functionality for

- Feature calculation
- Top N Reranking

(Lexical) Feature Calculation + Model Inference

Pros / Cons Solr LTR vs Reddit extra

	Solr LTR	Reddit's existing ML infra
Query-dependent features?	Yes	Not easily
Exists (at Reddit?)	No	Yes
Time horizon of content	~19 years	90 days
Features available	Minimal	Extensive
Network hops	None	Several
Types of models	Limited	Extensive
Model store size	~1MB*	Unbounded
Vertical scalability	Shared with Solr	Unshared

Solr LTR Plugin

Feature Store + Logging

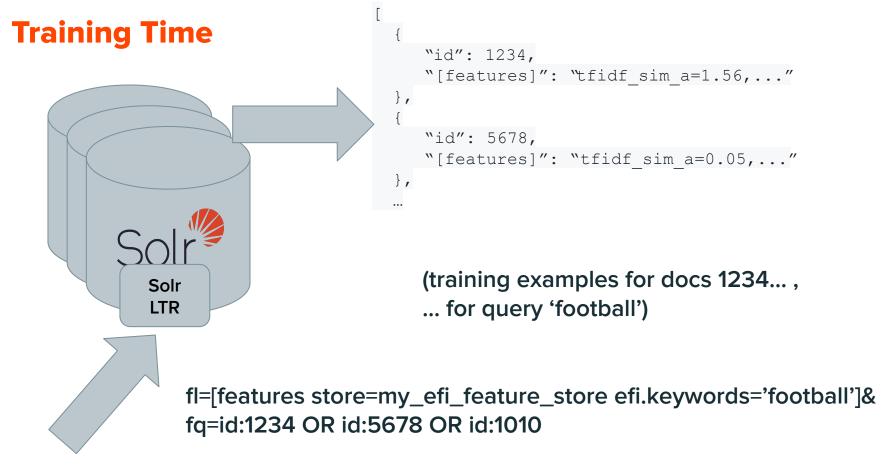
IE From Zero to Solr LTR:

Solr Query DSL

MY_EFI_FEATURE_STORE

```
"store" : "my efi feature_store",
"name" : "tfidf sim a",
"class" : "org.apache.solr.ltr.feature.SolrFeature",
"params" : { "q" : "{!dismax qf=text_tfidf}${keywords}" }
,
{
    "store" : "my efi feature_store",
    "name" : "tfidf sim b",
    "class" : "org.apache.solr.ltr.feature.SolrFeature",
    "params" : { "q" : "{!dismax qf=text_tfidf}${keywords}" }
},
```

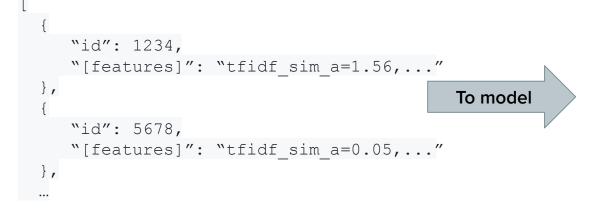
Solr LTR - Reference Guide



Keyword "football" posts: 1234, 5678, 1010

Store model for inference

Top N to rerank:

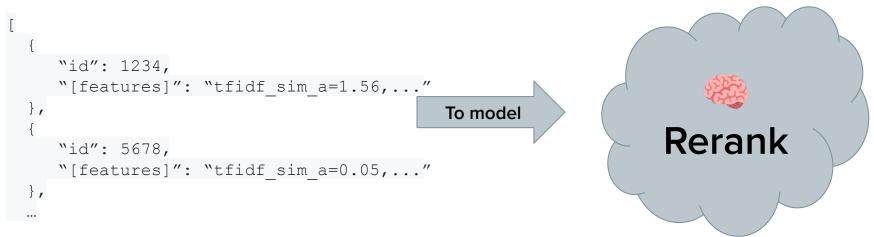


(Features Computed internal to Solr)

rq={!ltr model=foo-model efi.keywords='football']& ... (normal retrieval query)

Inference Time

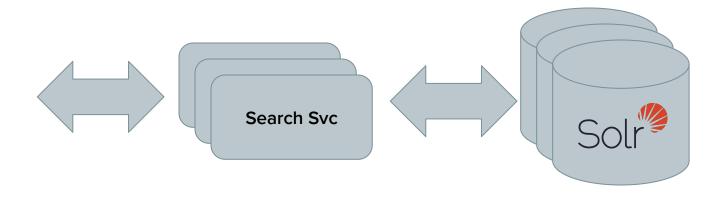
Top N to rerank:



(Features Computed internal to Solr)

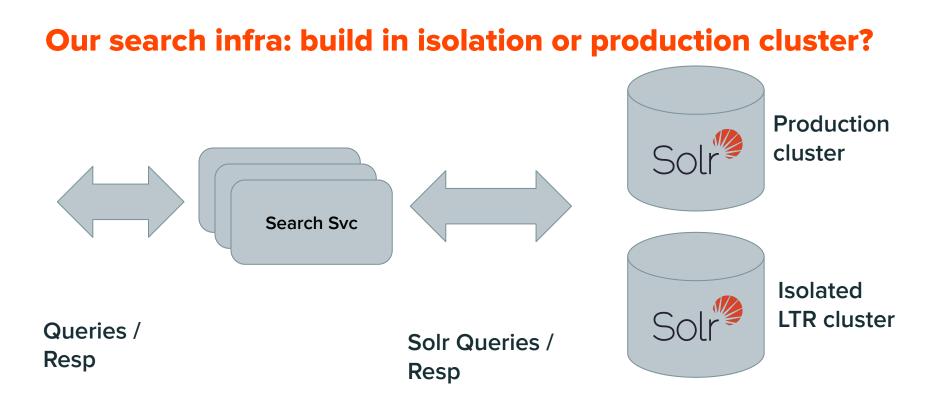
rq={!ltr model=foo-model efi.keywords='football']& ... (normal retrieval query)

Our search infra



Queries / Resp

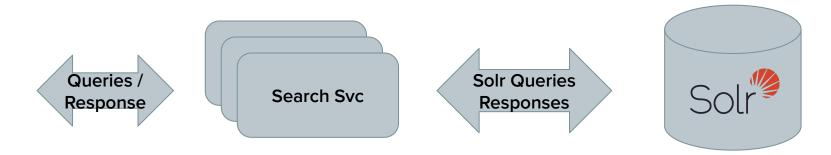
Solr Queries /SolrRespCloud



Pros / Cons

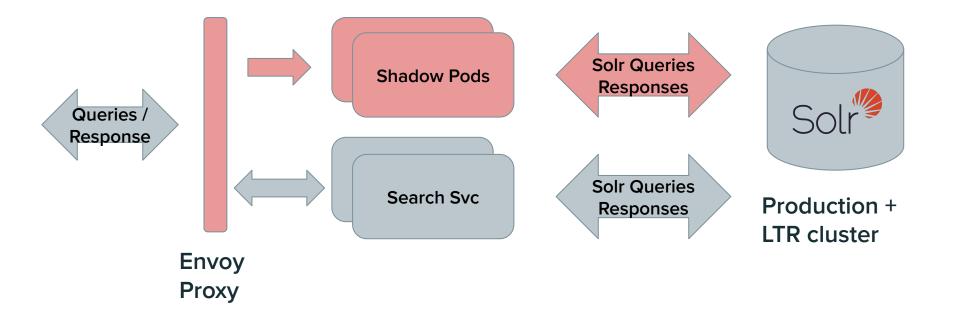
	Isolated	Single cluster	
Implementation speed	Need to add a new cluster	Already built!	
Development isolation	Build/ iterate fast independently of other work	Slower b/c of need to integrate with other work	
Safety	Faults don't cascade	Faults affect prod traffic	
Experiment confounders	Different latencies	Same latency in prod and experiment	
Operational cost	One more cluster to maintain	Maintain two use cases in same cluster	
\$\$\$	One more cluster to buy (non-trivial cluster cost)	Vertically scale existing cluster slightly	

Take 1: single cluster

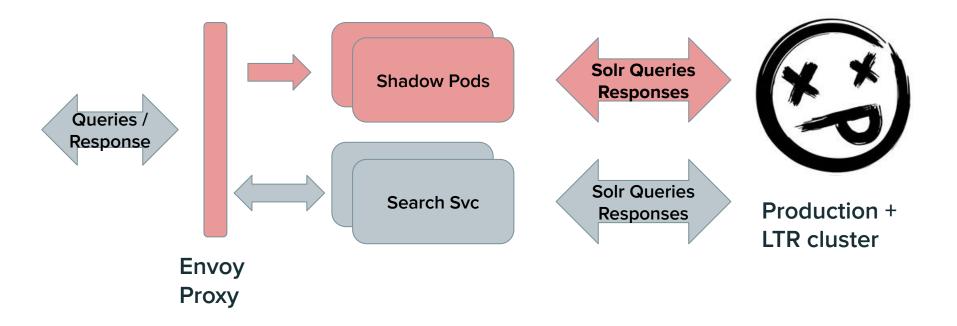


Production + LTR cluster

Take 1: Envoy for Shadow Traffic (Single Cluster)



Problems with co-location



Proble

shard 1	
/	
Sharuz	
O-shard3	
Sinardy	
///	
////	
//////	
///////Oshard9	
//////////////////////////////////////	
IIIIIIIIII / / Shardiz	
0 shard13	

solr-prod-v2-050942ec578a0ba5a (N) osolr-prod-v2-0b6174fdfa997c61e (N)

solr-prod-v2-0f53c24bac4202755 (N) O solr-prod-v2-067f48ce2895a83c4 (N)

-O solr-prod-v2-0c9ea4702ab5848f4 (N) -O solr-prod-v2-0b8ad08fcd2237b07 (N) -**9 solr-prod-v2-0fdb4432ed692b126 (N)**

O.solr-prod-v2-0a19501222cf7d107 (N O.solr-prod-v2-00460625a15d7e3ae (N O.solr-prod-v2-0e663826048eb0a9f (N

-O solr-prod-v2-03b475c29a5c002f3 (N) -O solr-prod-v2-0760f5d6ce8cd3234 (N) -**O solr-prod-v2-01b01df5bb2add085 (N)**

• solr-prod-v2-056ca9235a7c24938 (N) • Solr-prod-v2-0d1002bf1c9da110b (N)

−O solr-prod-v2-08b589af76ee29d27 (N) −O solr-prod-v2-08b589af76ee29d27 (N) −● solr-prod-v2-080d98eddce2a117f (N)

→ sofr-prod-v2-03cc96a8f2051b2d3 (N) →O sofr-prod-v2-0551ff43daf3fc7fe (N) →O sofr-prod-v2-0043b8eb22df8d2d4 (N)

-O *solr-prod-v2-0af1f4641385e8b3a (N)* ● solr-prod-v2-0fb5b80e85c34fe17 (N)

soir-prod-v2-0408fd671ee4ec78b (N)

solr-prod-v2-08c8024b3f2d3a186 (N)
 o solr-prod-v2-08b5db5a20db73f5f (N)

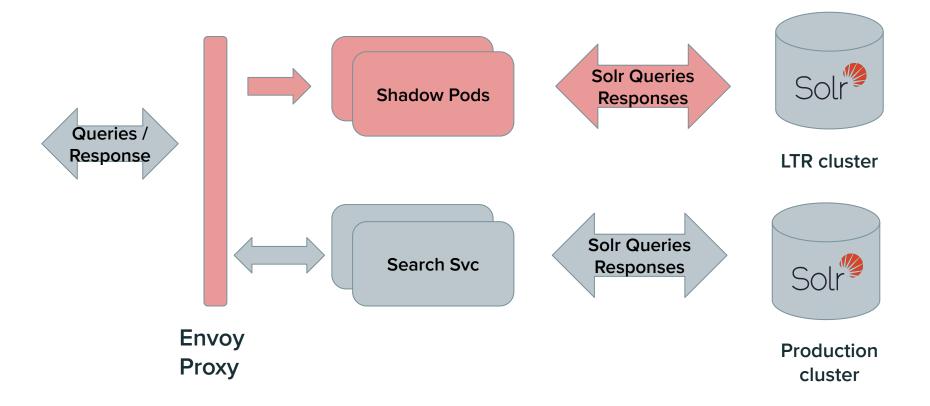
• solr-prod-v2-0694ce06f33c698c3 (N)

solr-prod-v2-0838de23bb2c2d5a0 (N)
 osolr-prod-v2-00685fa5d201b7b8 (N)

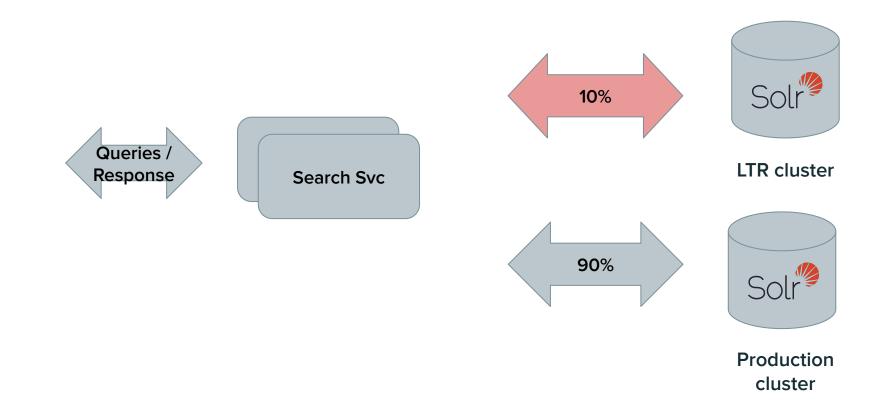
and the second s

ction + uster

Take 2: Isolated clusters



User-level Testing w/ traffic splitting



1. Retrieval (get top N docs per shard)

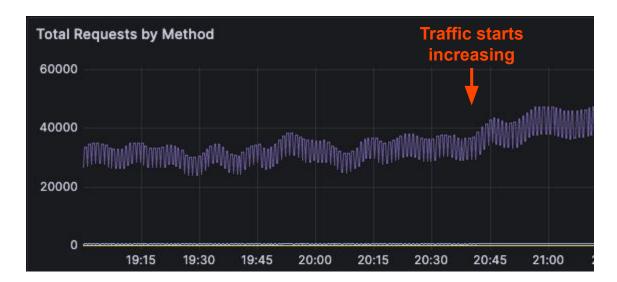
- 2. Re-rank (all N x shards docs)
 - a. Features computed/queried

title:\${keywords}
body:\${keywords}
title_phrase:"{\$keywords}"

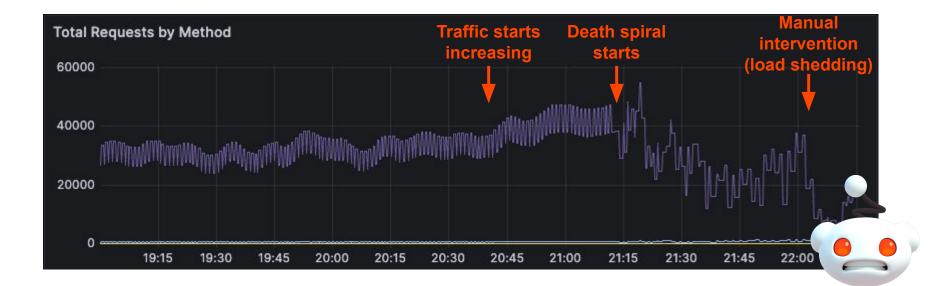
b. Mr. ML Model interprets features

3. Return re-ranked results

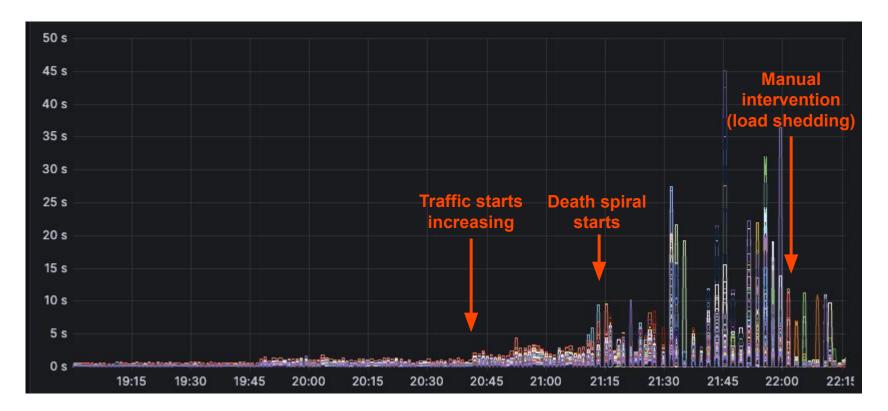
Scaling up ...



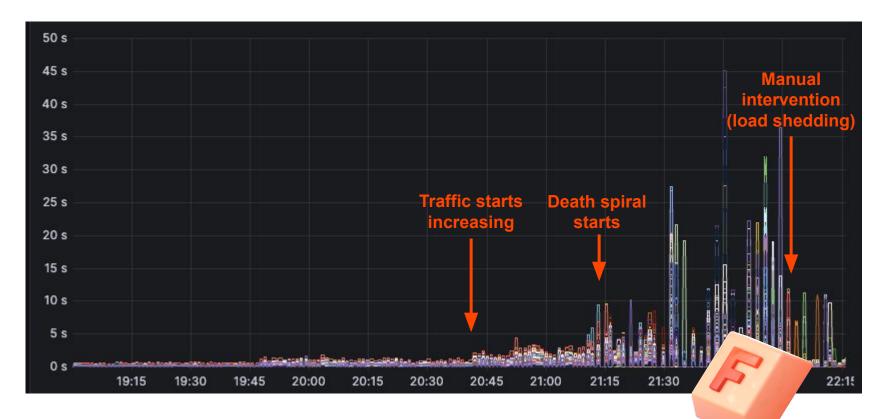
Scaling up ... and running into failures



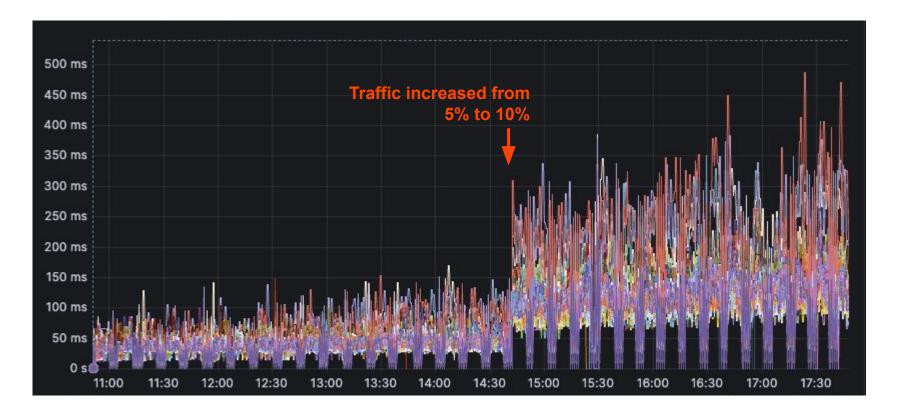
Garbage Collection time spent



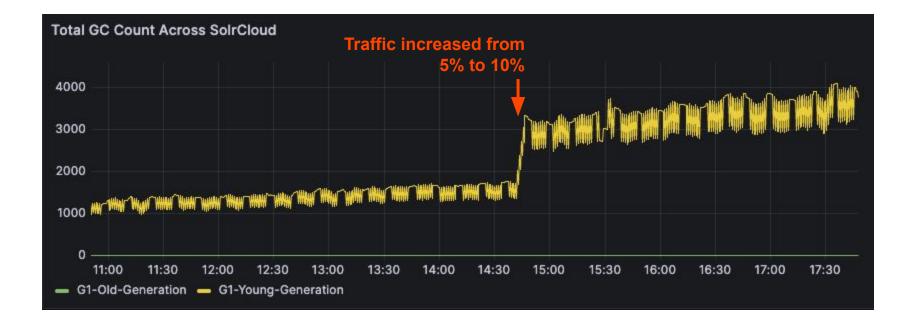
Time spent in Garbage Collection



Garbage Collection time spent (smaller jump)

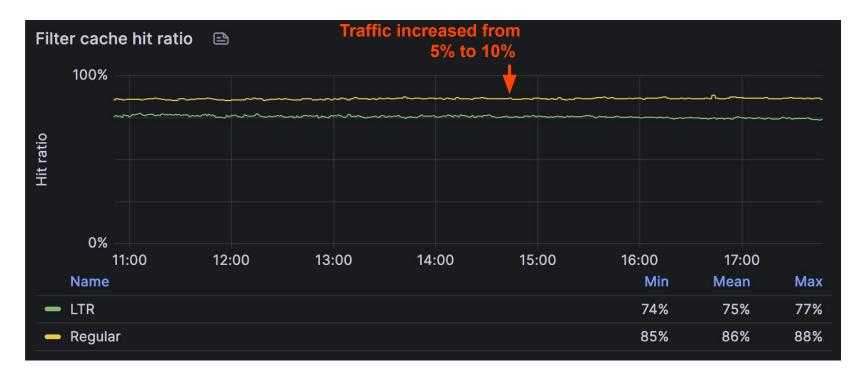


Garbage Collection time spent (smaller jump)



The caches look funny...

The caches look funny...



What do our features look like? Do they cache?

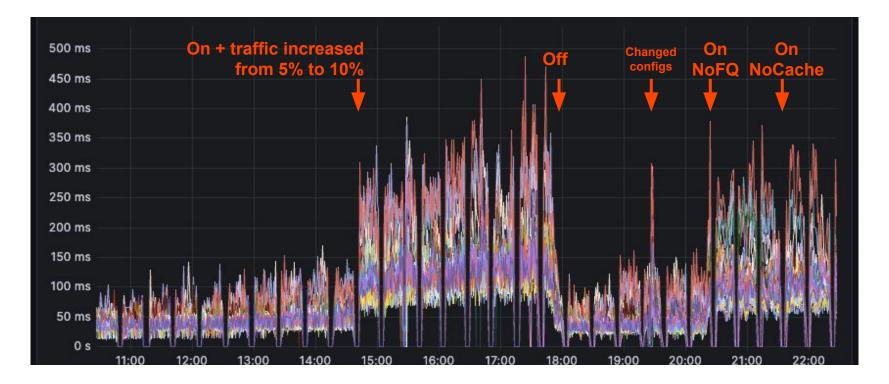
```
"name": "title_match_all_terms",
"store": "LTR_TRAINING",
"class": "org.apache.solr.ltr.feature.SolrFeature",
"params":
                    Should this be cached?
  "fa":
                    Should we set cache=false ?
   "{!edismax qf=title mm=100% v=\"${keywords}\"}"
```

...

Let's test a few configurations

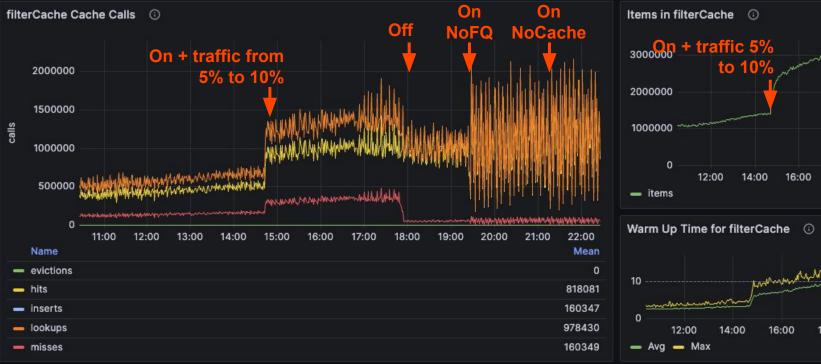
- On Re-rank with no changes
- Off No re-ranking
- **OnNoFQ** Re-rank without FQ features
- OnNoCache Re-rank with non-cached FQ features (cache=false)

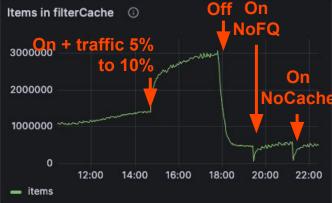
Garbage Collection time spent



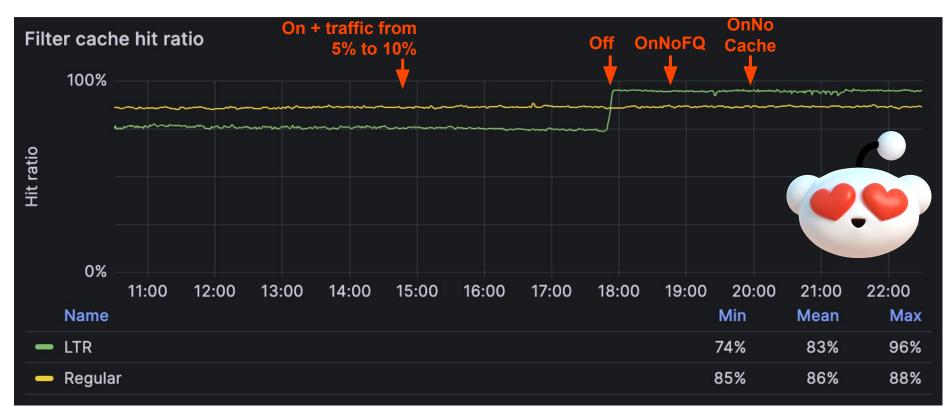
Caching reactions

Solr Caches - filterCache





Caching hit rate increased



Latency stabilized!

Tuning takeaways

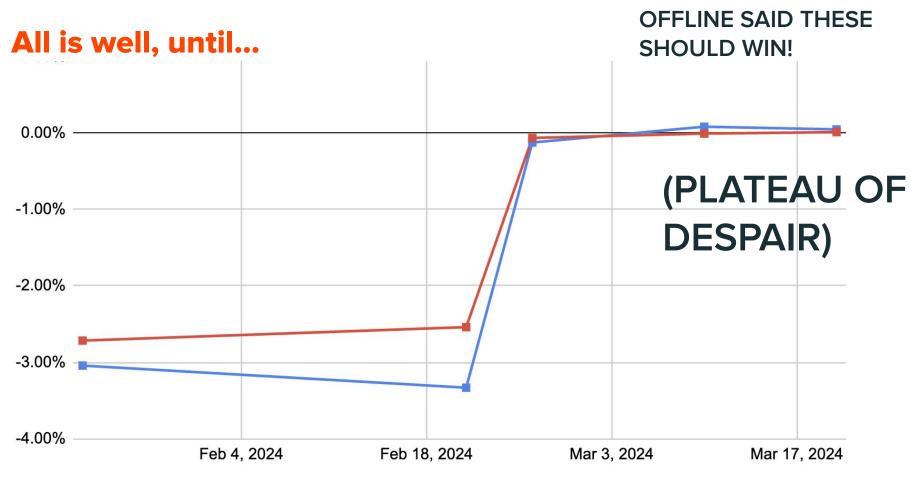
GC performance is important for Solr stability

Avoiding unnecessary work to optimize performance

LTR features can be expensive

Yeet to to the moon!

(next steps)



(A/B Tests LTR vs control ...)

Revisit labels

- Some qualitative analysis, more human in the loop
- Weighted avg: NDCG + LGTM
- Can eyeball different types of queries and LGTM

Can be accurate ~80-90% of the time

LTR (Mr. ML Model)

- Model only as smart (or dumb) as labels
- 100% NDCG
- Examples MUST be weighted by frequency

Must be accurate 100% of the time

Social search problem - very very changing SERPs

Compared to e-commerce, etc

SERPS change

A LOT!

-> Aggregated labels don't reflect actual SERPs

\mathbb{X}		÷	Q
ඛ	Home	То	р
Q	Explore		Tommie Right no
Q	Notifications		to the # channel
	Messages		
	Grok		
Ξ	Lists		
\Box	Bookmarks		20
දී	Communities		
\mathbb{X}	Premium		門
مْ	Profile		Q
\odot	More	TV	Spacen Replying
	Post		If the Ke have col
		6	1st Capi

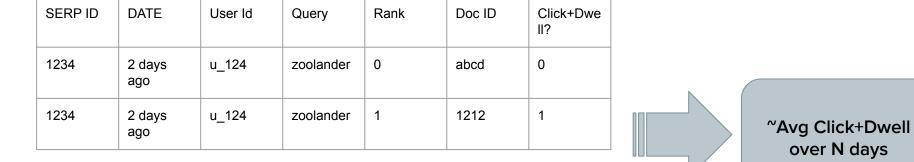
11 0 1 12

Currently Human -> Analytic labels

Multiple SERP analytics events

Aggregated to:

Train



...

SERP ID	DATE	User Id	Query	Rank	Doc ID	Click+Dwe II?
1251	25 days ago	u_110	zoolander	0	1211	0
1251	25 days ago	u_124	zoolander	1	12ab	1

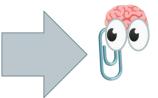
Use SERP directly to train?

SERP ID	DATE	User Id	Query	Rank	Doc ID	Click+Dwe II?
1234	2 days ago	u_124	zoolander	0	abcd	0
1234	2 days ago	u_124	zoolander	1	1212	1

SERP ID	DATE	User Id	Query	Rank	Doc ID	Click+Dwe II?
1251	25 days ago	u_110	zoolander	0	1211	0
1251	25 days ago	u_110	zoolander	1	12ab	1

Benefits:

- Implicitly weighted
- Handle Changing SERPs
- Features logged at point of search
- Can train on ALL context



Downsides:

- Need to feature log every search
- A lot more data!

x 100K ? 1m?

Feature Eng - Signals

Trending / recent posts that get engagement for a query

query	post	boost
ace ventura	6785	1.2
zoolander	1234	1.5
zoolander	5678	1.1

Pros / Cons Signals vs an LTR model

"OVERFIT" - not generalized, but a great cheat-sheet for 'right answer', but only for queries seen in past

Good for fast changing head queries

"GENERALIZED" - not overfit, general "pattern" can work with query seen rarely / never

Good for torso+tail / not as engaging queries

Signals cover A LOT of the search traffic

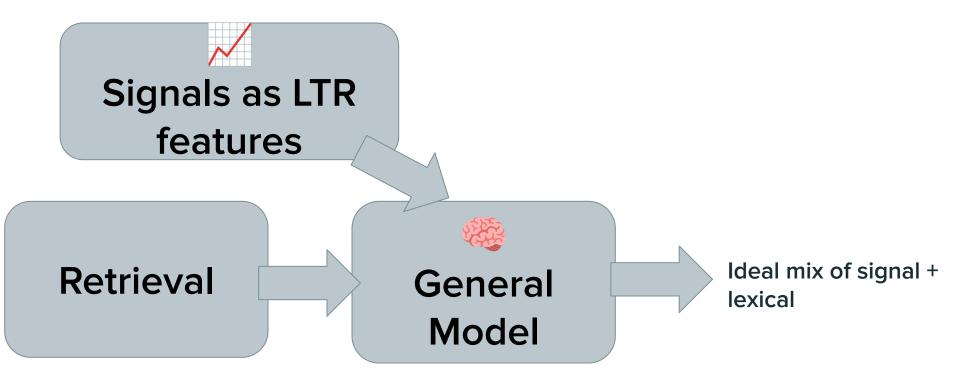
"OVERFIT" - not generalized, but a great cheat-sheet for 'right answer', but only for queries seen in past

Good for fast changing head queries

"GENERALIZED" - not overfit, general "pattern" can work with query seen rarely / never

Good for torso+tail / not as engaging queries

Need to add these to our model



(simple features / ranking)

(complex features / ranking)

Thank you

