
Query Understanding 
via LLM
From Ideation to Full Production

Ali Rokni
Search Quality Tech Lead



Query Understanding via LLM 2

● 32M Unique Devices* 

● 287M Cumulative Reviews**

* Average monthly 2023
** As of December 31 2023

Yelp
Connecting people to the great local businesses



● LLM at Yelp

○ Enhancing snippets

○ Business summaries

○ Services concierge 

○ …

● Query Understanding

○ The pioneering project

○ Laid the groundwork for Yelp's innovative 

use of LLMs 

LLM at Yelp
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● Understanding the user intent

○ Specific category of businesses (e.g. Restaurants)

○ Particular dish or service (e.g. Sushi, dishwasher repair)

○ Specific business (e.g. Gary Danko)

○ For a specific location/time (e.g. Late Dinner in SF)

○ Is the query misspelled

○ …

●  Natural Language Understanding tasks 

Query Understanding
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● Keyed by the query

● Low amount of text to be processed

● Power law query distribution

What is Special about Query Understanding
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𝑓(query) → static response



Scaling UpFormulation Proof of 
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A Generic Approach
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● Mostly in LLM playground

● Is LLM an appropriate tool?

● What is the scope?

● Combining tasks?

Formulation
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● Providing more context

● What information besides the query

○ Business categories

○ Business names

○ Query location

○ …

Are There Any Opportunities for RAG
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● Using the most powerful LLM
○ GPT-4, CLAUDE3 OPUS, …

 

● Iterative process
○ Example by example

■ Improving the example
■ Finding new teachable examples

○ Iterating on input and output
○ Possibility of changing the task scope
○ To consider the time/cost budget

Creative and Iterative Process
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healthy fod near me => {topic} healthy fod {location} near me 

healthy fod near me [local foods]  => {topic} healthy food {location} near me 
[spell corrected - high] // {topic} healthy fod {location} near me

Query RAG Combining spell correction
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pet friendly sf restaurants open now

Query Segmentation
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Topic Location TimeTopic



● Scope: Iteratively selecting the classes
○  topic, name, location, time, question, and none

chicago riverwalk hotels => {location} chicago riverwalk {topic} hotels
grand chicago riverwalk hotel => {name} grand chicago riverwalk hotel

● Combining spell correction

healthy fod near me => {topic} healthy food {location} near me [spell corrected - high]

Query Segmentation 
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● RAG
○ names of up to 2 most viewed businesses

● Applications
○ Implicit location rewrite
○ Name intent detection
○ Auto-enable filters
○ ….

Query Segmentation 

Query Understanding via LLM 14



Scaling UpFormulation Proof of 
Concept

Query 
Segmentation Snippet 

Highlighting

Query Understanding via LLM



● A multi-step process

○ Selecting reviews

○ Ranking snippets

○ Highlighting query terms

The system should do much more 

than just relying on query terms

Snippet Highlight
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● Does our generic approach work here? It depends 

○ Using LLM to take over entire process of selection, ranking and 

highlighting ❌
○ Generating the most helpful terms to match on in business 

reviews ✅

vegan burgers near me: vegan burger, veggie burger, vegan, impossible 

burger, beyond burger, tofu burger, plant-based, vegetarian

● creative task

Snippet Highlight
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● Low bar for inclusion
○ Better to show vegetarian or plant-based for vegan burger than 

showing nothing

● RAG
○ Most relevant business categories

best things to do with kids : [childrensmuseums, zoos, parks]

● Iterative process
○ Input & output may evolve

Snippet Highlight
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● May 2022
Query: healthy food

Key concepts: healthy food, healthy, organic

● March 2023
healthy food -> healthy food, healthy, organic, low calorie, low carb

● September 2023
healthy food -> healthy food, healthy options, healthy | nutritious, organic, low calorie, low carb, 
low fat, high fiber | fresh, plant-based, superfood

● What is the scope of each iteration?
○ What is the time and budget constraints?

Iterative Process
Input & output may evolve
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● Building a non real time approach

○ Why it is feasible for query understanding?

○ Use most powerful LLM model

■ Pre-compute 100K common queries

○ Cache the result

■ Limited cost and no latency concerns

● Offline testing

● A/B experiment

Proof of Concept
How does our formulation work in practice
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Different Approaches

● Qualitative vs quantitative

● Isolated vs in the system

Examples

● Human expert annotation: very subjective

● Quantitative analysis

● Accuracy on specialized datasets

● Impact on downstream tasks

● Quantitative and qualitative comparison of 

search ranking

Offline Testing
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A/B
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Query Segmentation
Implicit Location rewrite
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Best Restaurants in san francisco

Topic location



Implicit Location Rewrite
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Status Q
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Snippet Highlight
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Treatment

Status Quo
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● Blindly scaling from top 100K to top 100M is not efficient

○ Cost and infra challenges

○ Distribution of queries

○ Understanding the rare queries is relatively harder

Scaling Up
Challenges
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Scaling Up
A multi-step process
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Fine tune on smaller LMs

● Realtime
○ BERT, T5, ..

● Splitting combined 
tasks

● Refactoring legacy 
flows

Build fine tuning dataset

● Iterative

● Find informative group of 

examples

● 2K - 5K examples 

● Human relabel

Fine tuning with smaller 
LLMs

● Smaller LLM 
○ GPT-3.5-turbo

● Higher quality 

● 100x cost saving

● Cache-based system 

such as key/value DBs



● X, Y and Z are a representation of a single digit improvements over the previous step

● Numbers vary from metric to metric and from platform to platform but magnitude is similar

Result
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Step Proof of concept 
(PoC)

PoC with fine 
tuned model

Top 10-100M 
queries

Traffic coverage  30 - 40%  30 - 40%  > 90%

Incremental 
improvement

+X.a% +Y.b% +Z.c%



● Reusing existing LLM responses for related tasks

○ Snippet highlights for retrieval and ranking

○ Similar performance gain in PoC

● Retrieval and Ranking

○ More complex system

○ In progress of building architecture

● Relevance Evaluator

In progress and Future Work
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Thank you

33Query Understanding via LLM

alirokni@yelp.com


