Query Understanding
via LLM

From Ideation to Full Production



Yelp

Connecting people to the great local businesses

e 32M Unique Devices*

e 287M Cumulative Reviews**

Home &  Restaurants Shopping Other Beauty & Health Auto Arts, Travel & Nightlife
Local Fitness Entertainment  Hotel
& Events

Services

* Average monthly 2023
** As of December 31 2023
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LLM at Yelp

e LLMatYelp

o  Enhancing snippets
o  Business summaries
o  Services concierge

O

e Query Understanding
o  The pioneering project
o  Laid the groundwork for Yelp's innovative
use of LLMs
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$$$$ + New American, French, Wine Bars
Closed today * See hours
By Appointment Only

San Francisco dining with a customizable menu and
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Query Understanding

e Understanding the user intent

o  Specific category of businesses (e.g. Restaurants)

o Particular dish or service (e.g. Sushi, dishwasher repair)

22 g ) Commnn) (> (omerad) D
o  Specific business (e.g. Gary Danko) @ - N,
1' ub\‘&“ < All Results % N ﬁ*%'a
. . . . . A o \J) :
o  For a specific location/time (e.g. Late Dinner in SF) ‘ B

o Isthe query misspelled

o

e Natural Language Understanding tasks
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What is Special about Query Understanding

flquery) — static response

e Keyed by the query
e Low amount of text to be processed

e Power law query distribution
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A Generic Approach

Proof of

Formulation Concept

Query Snippet
Segmentation Highlighting
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Proof of

Concept
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Formulation

Mostly in LLM playground

Is LLM an appropriate tool?

What is the scope?

e Combining tasks?
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Are There Any Opportunities for RAG

e Providing more context

e What information besides the query
o  Business categories
o  Business names
o Query location

o
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Creative and Iterative Process

Using the most powerful LLM
GPT-4, CLAUDE3 OPUS, ...

o

Iterative process
Example by example

o

o

o

@

Improving the example

healthy fod near me => {topic} healthy fod {location} near me

\ ¢

Query RAG Combining spell correction
r A N\ f_)ﬁ
healthy fod near me [local foods] => {topic} healthy food {location} near me

// {topic} healthy fod {location} near me

Finding new teachable examples
Iterating on input and output
Possibility of changing the task scope

To consider the time/cost budget
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Proof of

Concept

Query ) Snippet
Segmentation Highlighting
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Query Segmentation

pet friendly sf restaurants open now
u v J v \ v J \ v J

Topic Location Topic Time
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Query Segmentation

e Scope: lteratively selecting the classes
o  topic, name, location, time, question, and none

chicago riverwalk hotels => {location} chicago riverwalk {topic} hotels
grand chicago riverwalk hotel => {name} grand chicago riverwalk hotel

e Combining spell correction

healthy fod near me => {topic} healthy food {location} near me

Query Understanding via LLM




Query Segmentation

e RAG
o names of up to 2 most viewed businesses

e Applications

Implicit location rewrite
Name intent detection
Auto-enable filters

o O O O
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Proof of

Concept

Segrf\z::gtion ] Snip pe!:
Highlighting
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Snippet Highlight

e A multi-step process
o  Selecting reviews
o Ranking snippets
o  Highlighting query terms

The system should do much more

than just relying on query terms

Query Understanding via LLM
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Home Services v Auto Services v More v

Waitlist Online Booking Good for Kids

4. Entwined Lighted Forest
0000 »

Public Art

G “If you're into light shows and trippy evening activities check out this light
installation in the...” more



Snippet Highlight

e Does our generic approach work here? It depends

o Using LLM to take over entire process of selection, ranking and

highlighting X
o  Generating the most helpful terms to match on in business

reviews (4

vegan burgers near me: vegan burger, veggie burger, vegan, impossible

burger, beyond burger, tofu burger, plant-based, vegetarian

e cCreative task
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Snippet Highlight

e Low bar forinclusion

o  Better to show vegetarian or plant-based for vegan burger than . * Q@ mmmmn =+ é:'
showing nothing . G o * . h
° 0 g ‘_ oo
=TT ERE
e RAG — — 1| 8
o  Most relevant business categories — || I =
best things to do with kids : [childrensmuseums, zoos, parks] '_O_' — ») LJ
y \ O °
@;: E v g
IO H=FASHao)

e lterative process
o  Input & output may evolve

Query Understanding via LLM



Iterative Process

Input & output may evolve

e May2022
Query: healthy food

Key concepts: healthy food, healthy, organic

° March 2023

healthy food -> healthy food, healthy, organic,

e September 2023

healthy food -> healthy food, healthy options,
low fat, high fiber | fresh, plant-based, super

e What is the scope of each iteration?
o  What is the time and budget constraints?

Query Understanding via LLM

low calorie, low carb

healthy | nutritious, organic,
food

low calorie,

low carb,
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Task Scope

Input/Output Proof of Concept

Query Snippet
Segmentation Highlighting



Proof of Concept

How does our formulation work in practice

e Building a non real time approach
o  Why itis feasible for query understanding?
o  Use most powerful LLM model
m  Pre-compute 100K common queries
o  Cache the result

m Limited cost and no latency concerns
e  Offline testing

e A/Bexperiment

Query Understanding via LLM
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Offline Testing

Different Approaches

Qualitative vs quantitative

Isolated vs in the system

Examples

Human expert annotation: very subjective
Quantitative analysis

Accuracy on specialized datasets

Impact on downstream tasks

Quantitative and qualitative comparison of

search ranking

Query Understanding via LLM
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Task Scope

Input/Output Proof of Concept

Query Snippet
Segmentation Highlighting
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Query Segmentation

Implicit Location rewrite

Best Restaurants in san francisco

\ J
\ J
Y Y
Topic location
Best Restaurants in san francisco New York, NY
Best Restaurants in san francisco San Francisco, CA

Query Understanding via LLM
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Implicit Location Rewrite

restaurants in chase center san francisco, ca
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Task Scope

Input/Output Proof of Concept

Snippet
Segmentation Highlighting

Query
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Snippet Highlight

cheap haircut

Query Understanding via LLM

San Francisco, CA

5. Geary Salon
0000c 2

Hair salons $ - Laurel Heights

Closed until 9:30 AM

Q@ “First time here today...was recommended by my son and nephews. Had my haircut by
Anthony and he” more

Status Quo

5. Geary Salon
0000c 2

Hair Salons ¢ « Laurel Heights

Closed until 9:30 AM

@ “"Amazing service, great price, and an highly skilled haircut is going to make this my go
to spotin..." more

)

Treatment
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Improved
model

Task Scope Proof of
Input/Output Concept

Teachable
examples

Query Understanding via LLM

A/B result

Query
Segmentation

Snippet
Highlighting



Scaling Up

Challenges

e Blindly scaling from top 100K to top 100M is not efficient

o  Cost and infra challenges

o  Distribution of queries

o Understanding the rare queries is relatively harder
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Scaling Up

A multi-step process

Fine tuning with smaller
LLMs

Build fine tuning dataset Fine tune on smaller LMs

e lterative e Smaller LLM e Realtime
e Find informative group of o  GPT-3.5-turbo o BERT,TS,..
examples e Higher quality e Splitting combined
_ tasks
e 2K-5Kexamples e 100x cost saving e Refactoring legacy
e Human relabel e (Cache-based system flows

such as key/value DBs
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Result

Step Proof of concept PoC with fine

(PoC) tuned model
Traffic coverage 30 - 40% 30 - 40%
Incremental +X.a% +Y.b%
improvement

° X, Y and Z are a representation of a single digit improvements over the previous step

° Numbers vary from metric to metric and from platform to platform but magnitude is similar

Query Understanding via LLM

Top 10-100M
queries

> 90%

+Z.c%
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In progress and Future Work

e Reusing existing LLM responses for related tasks
o Snippet highlights for retrieval and ranking
o Similar performance gain in PoC

e Retrieval and Ranking
o  More complex system
o In progress of building architecture

e Relevance Evaluator

Query Understanding via LLM
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Thank you

alirokni@yelp.com
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