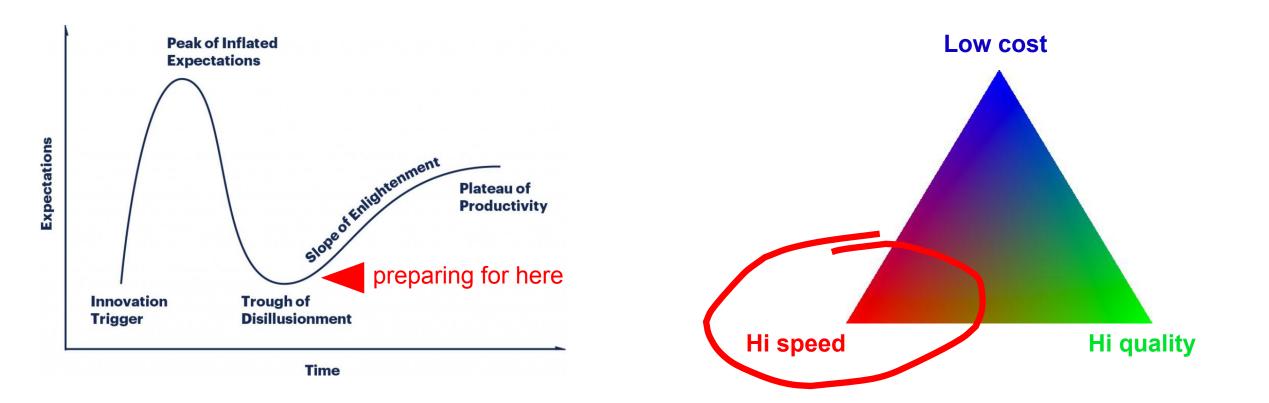
Vector Search test at scale

Mohit Sidana, Search Architect Tom Burgmans, Technology Product Owner Search

April 23rd 2024

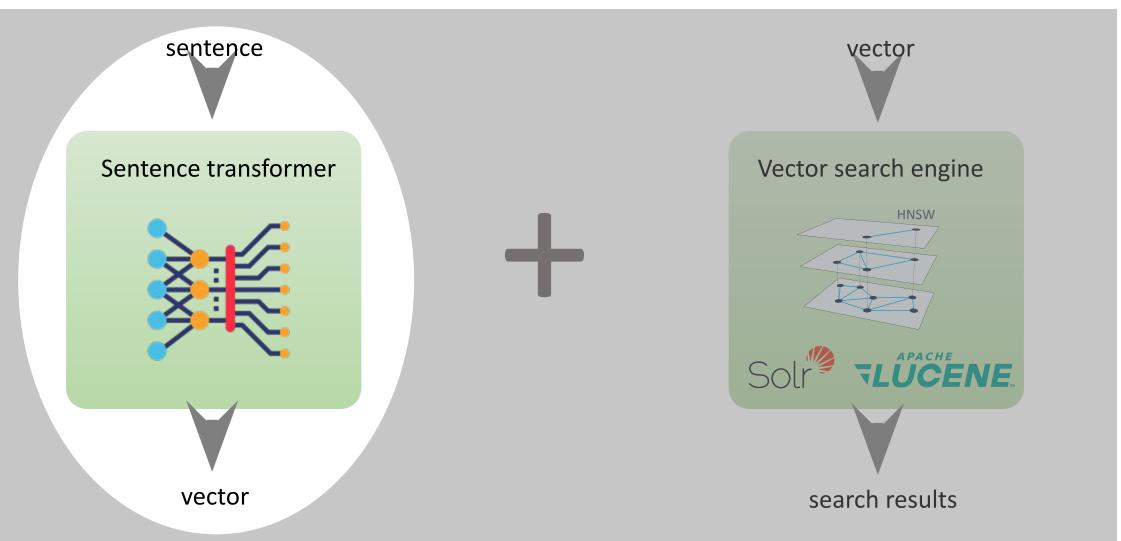
Introduction

Vector search enables searching for meaning. It has great potential for information retrieval. Let's pierce through the hype and get prepared for production-like use cases.



Query latency =

Embedding inference



ANN search

The defaults for performance testing embedding inference

Query test set	
# of queries	1000
Queries sizes (in tokens)	varying between 4 and 32
Queries text	English phrases

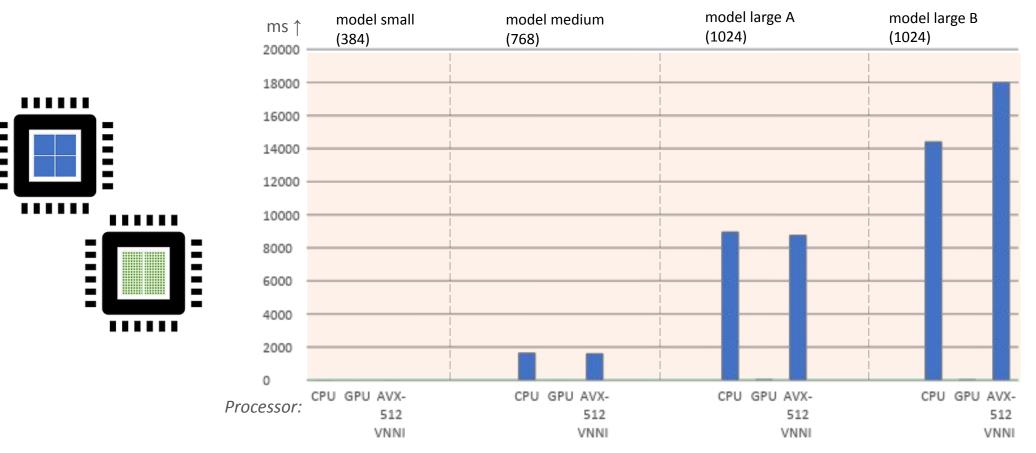
Load test settings	
# of threads	100
Pause between transactions	1000 ms
Duration per test	5 min

Sentence transformer models		
Small (384 dimensions)	tavakolih/all-MiniLM-L6-v2-pubmed-full	
Medium (768 dimensions)	pritamdeka/S-PubMedBert-MS-MARCO	
Large A (1024 dimensions)	E5-large-v2	
Large B (1024 dimensions)	thenlper/gte-large	

System under test	
EC2 type	g4dn.xlarge
CPU cores	4
GPU	1
Total Memory	16 Gb

Model/Vector conversions	
ONNX	yes
Vector to numpy	yes
Vector normalized to unit length	No
Quantized to int8	Νο
Graph Optimization	No

Processing Unit on embedding inference latency

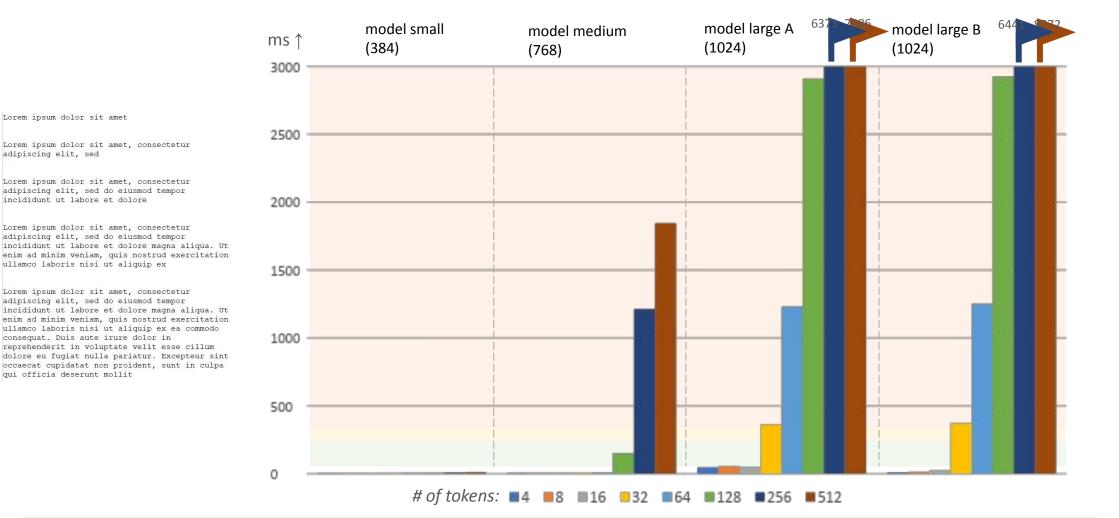


avg latency for processor

Lessons learned: GPU is optimal for embedding inference tasks

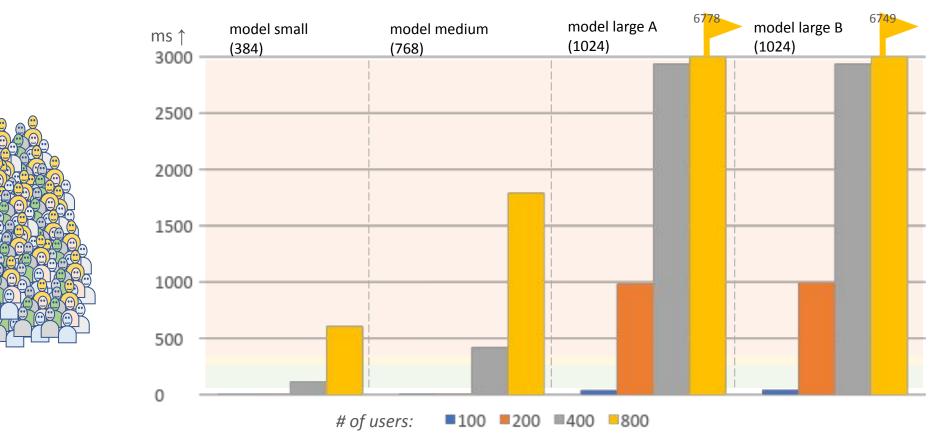
Text length on embedding inference latency

avg latency for text length



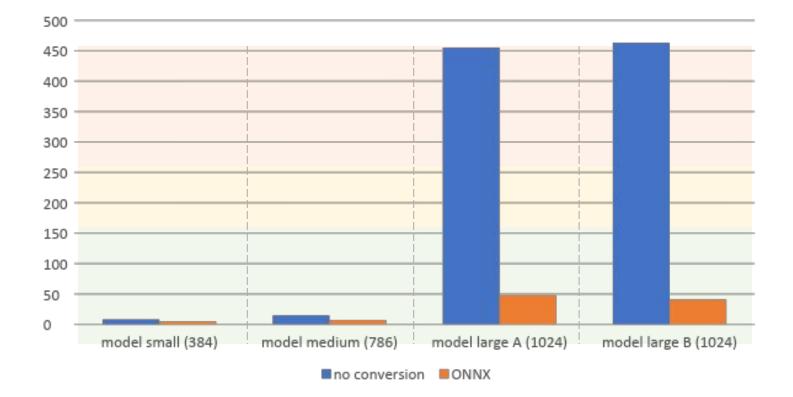
Lessons learned: text length has a linear relationship with embedding inference latencies

Simultaneous users on embedding inference latency



avg latency for users

ONNX conversion on embedding inference latency



avg latency for ONNX conversion

Lessons learned: ONNX conversion is a great performance booster

Still in progress....

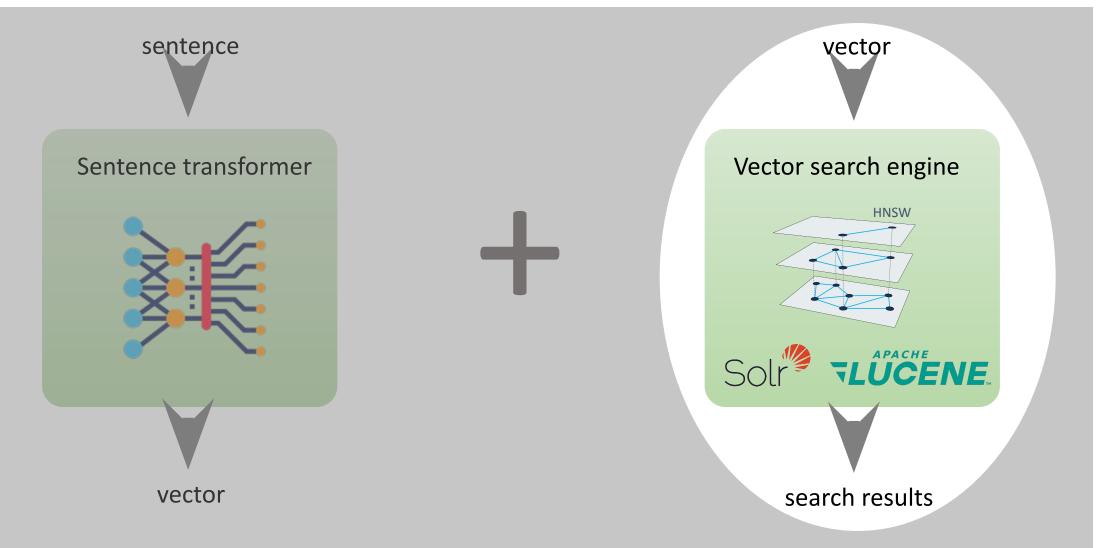
- Graph optimizations
 - Constant Folding
 - Redundant node eliminations
- Model quantization
 - Float32 to Int8
 - Binary quantization
- Model conversion to TensorRT
- Scaling out the embedding service

Query latency =

• Wolters Kluwer

ANN search

Embedding inference



The defaults for performance testing ANN search

Document set	
# of documents	2.600.000
Avg doc size (w/o vectors)	6,8 kb
Vectorized text	English phrases

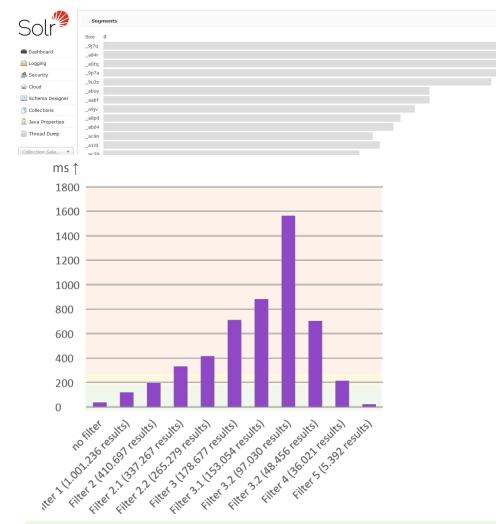
Load test settings	
# of threads	100
Pause between transactions	1000 ms
Duration per test	15 min
Vector of every query is unique	Yes
k	50
Embedding inference included	No

Sentence transformer models

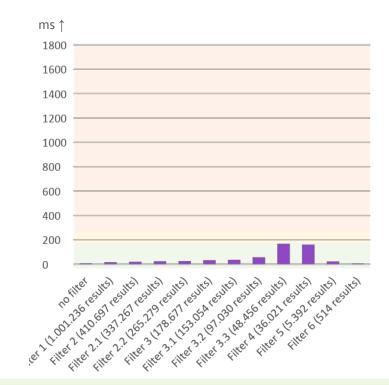
Small (384 dimensions)	tavakolih/all-MiniLM-L6-v2-pubmed-full
Medium (768 dimensions)	pritamdeka/S-PubMedBert-MS-MARCO
Large A (1024 dimensions)	E5-large-v2
Large B (1024 dimensions)	thenlper/gte-large

System under test		
EC2 type	r5.4xlarge	
CPU cores	16	
Total Memory	128 Gb	
Memory reserved for JVM	32 Gb	
Solr / Lucene version	9.3.0 / 9.7.0	
Shards	1	
Replicas per shard	1	
Segments per collection	1 (fully optimized)	
Warmed up memory	yes	
Field(type)		
indexed	true	
stored	false	
Class	solr.DenseVectorField	
similarityFunction	euclidean	
vectorEncoding	FLOAT32	
hnswMaxConnections	16	
hnswBeamWidth	100	

Get you s... together!



Fully optimized



Lessons learned: avoid a segmented index for vector search

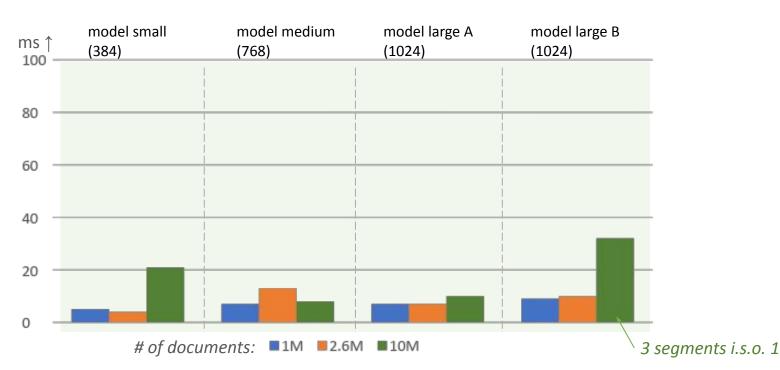
Vector length on index metrics

Indexing 2.6M documents with vectors and other metadata

index size per model 18 60 16 50 db4↑ ms ↑ 12 40 10 30 8 20 6 10 0 0 model large model large no model model small model no model model small model model large model large (384)medium A (1024) B (1024) (384)medium A (1024) B (1024) (786)(786)index size avg index speed / doc

Lessons learned: vectors as metadata have a big impact on index size and index speed

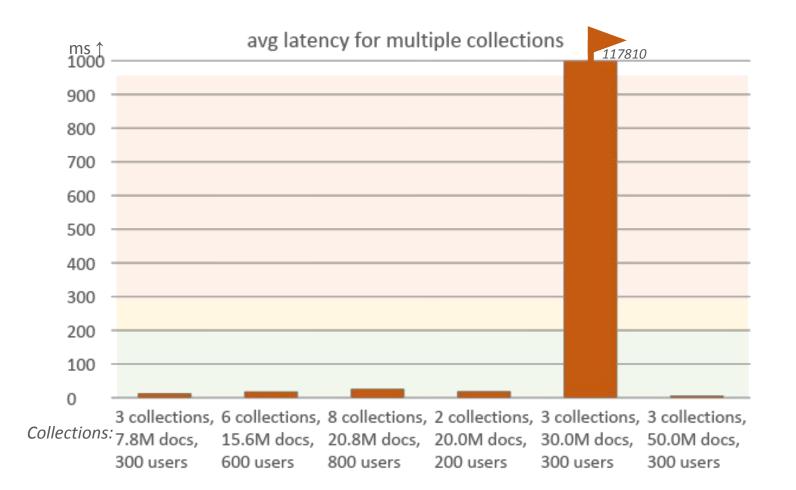
Vector length, # of documents on query latency



avg latency for # of indexed docs

Lessons learned: vector search could perform well for large content sets

Simultaneous collections on query latency



Lessons learned: not a problem to query multiple collections under high load... as long as they all fit into memory.

k = the number of approximate nearest neighbours to return

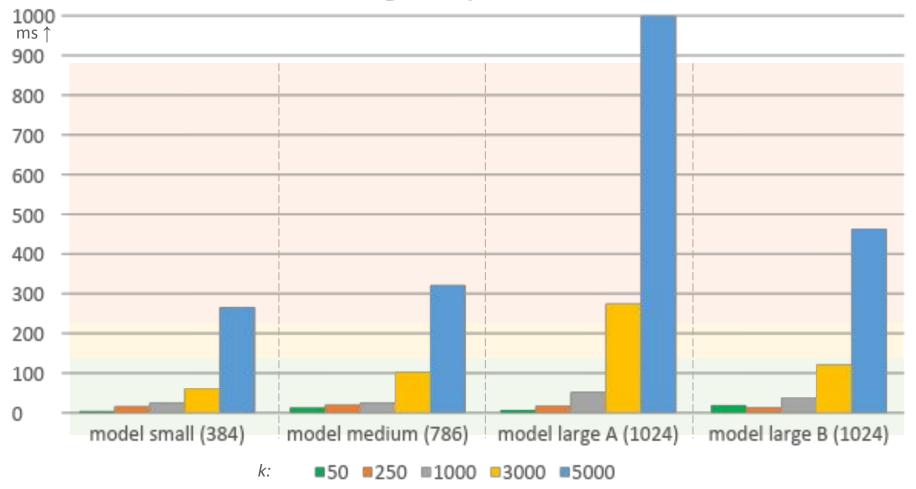
q={!knn f=vectorfield **topK=50**}[-0.32371908, -0.49656674, ...]&rows=10

k not only defines the (maximum) number of results, but also impacts relevancy! The higher k, the more likely that the nearest neighbours are in the top results.

Expectation: higher k means higher avg latency

K on query latency

avg latency for k



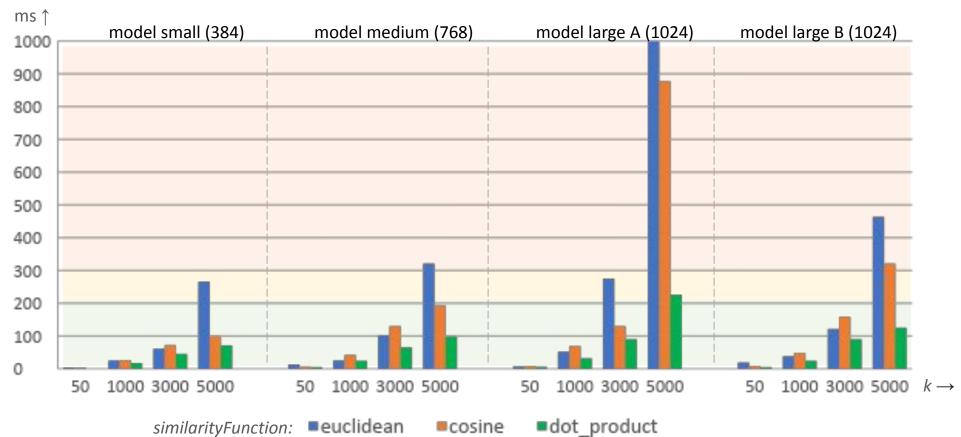
Lessons learned: don't make k higher than needed for acceptable relevance.

SimilarityFunction

	euclidean	cosine	dot_product
Measures	distance	angle	projection
Notation	a - b	(a * b) / (a * b)	(a * b)
	a d(a,b) b	a * *	ar in to

Expectation: dot_product is fastest, then euclidean, and cosine the slowest

SimilarityFunction on query latency



avg latency for k & similarityFunction

Lessons learned: dot_product is the best performing.

Cosine is slowest for low k values, euclidean is slowest for high k values

VectorEncoding

FLOAT32

-0.21449316, -0.7045389, -0.67822456, -0.29824427, -0.23921804, -0.0809364, -0.5233864, 0.7305913, 0.09852978, 0.50574046, 0.3282113, 0.2059273,-0.031108191, 0.035400968, -0.22698092, -0.32095635, 0.21415716,0.09343966, 0.08683256, 0.19313174, 0.63785744, 0.298874, -0.28171337, 0.18531613, -0.6641149, 0.19386779, -0.31794095, 0.4402138, 0.3466606, -0.2858599, -0.22758806, 0.5094929, 0.046053726, 0.75082016, -0.07399338,-0.2844224, 0.40751144, -0.20799315, 0.14701228, -0.08118942, 0.50932866, -0.28915992, 0.19562256, 0.21961893, 0.20695217, 0.10814471, 0.2393254,-0.8819913, 0.16113488, -0.5311082, -0.1953351, -0.13989331, 0.10564095,0.40680933, 0.042414997, 0.07088098, -0.020308852, -0.0022723621, -0.043205384, 0.12104646, 0.08444527, 0.64572316, 0.08393095, -0.19806932,-0.04344313, 0.4255652, -0.42429543, -0.41475034, -0.36487082, -0.09986199,-0.13209495, 0.06342443, 0.027432332, -0.27986363, 0.3010312,-0.103268646, 0.37407556, 0.11932395, -0.58556277, 0.059918627, 0.4299334,0.4327116, 0.101633854, -0.05603434, -0.36993638, 0.13854954, 0.34047017, 0.20950834, 0.34301245, 0.048450783, 0.50535196, 0.044725284, -0.17060715, -0.37688974, 0.20206492, 0.04468606, 0.14183544, -0.2736002,-0.0658742

BYTE

-3, -4, -7, 2, -7, 2, -10, 5, 8, 4, 2, -8, -12, 7, -9, 8, -20, -1, 1, -7, -4, 7, 2, 1, -9, 0, 2, -3, -1, -3, -5, 11, 4, 8, 0, 4, -2, 4, 17, 1, 0, -1, -1, 6, 2, 4, -4, -6, 1, -2, -2, -2, -15, 5, 1, 1, -7, -6, 6, -2, 8, -3, -14, 9, 20, -5, 10, 0, 3, 6, 2, 1, 0, 10, 8, 5, -6, 5, 5, -4, -1, 8, 4, 8, 7, -6, 4, 3, -11, 3, -7, -11, 3, -2, -8, 6, -2, -2, -2, -15, 5

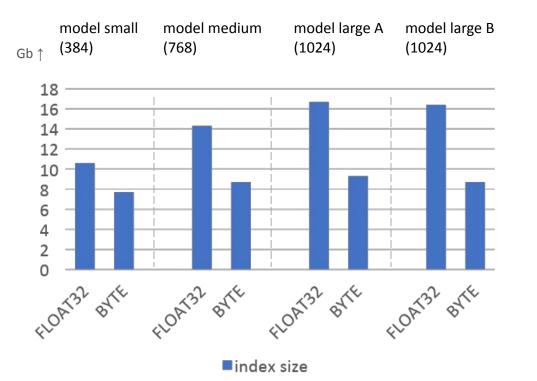
Scalar Quantization:

Maintaining the angle
Maintainting the relative distance

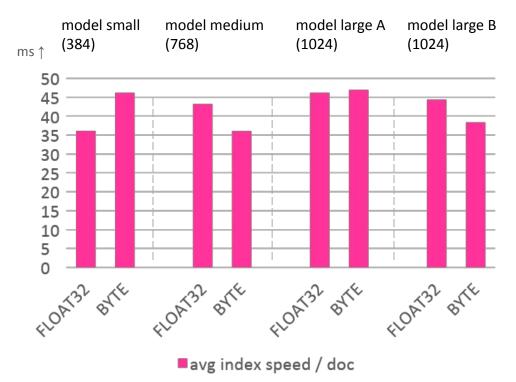
Expectation: both index size and avg query latency are lower with BYTE compared to FLOAT32

VectorEncoding on index metrics

index size for vectorEncoding

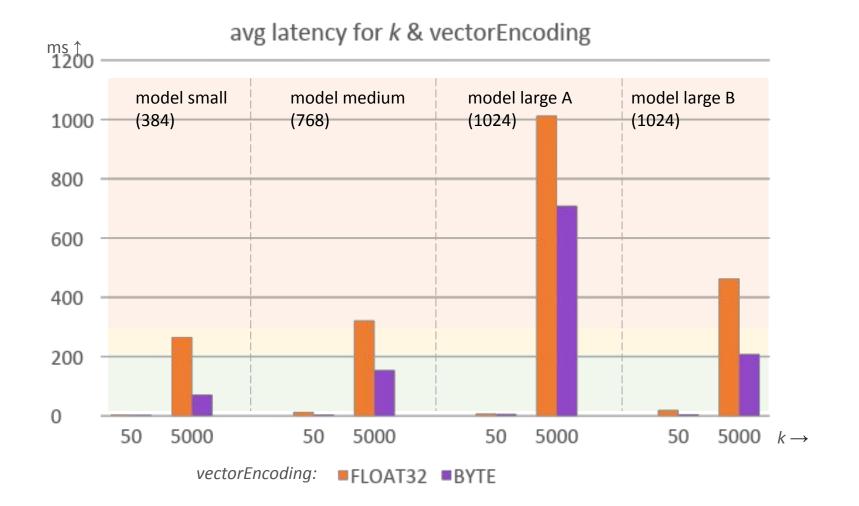


avg index speed / doc for vectorEncoding



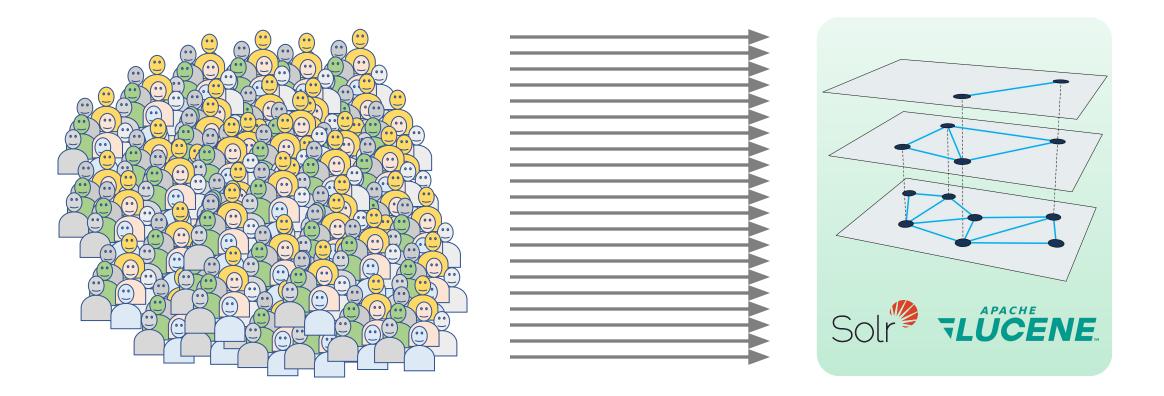
Lessons learned: encoding vector values as BYTE i.s.o. FLOAT32 could greatly reduce the index size, especially for large vectors

vectorEncoding on query latency



Lessons learned: encoding vector values as BYTE i.s.o. FLOAT32 is an excellent way to lower latencies especially for high k values

Stress test

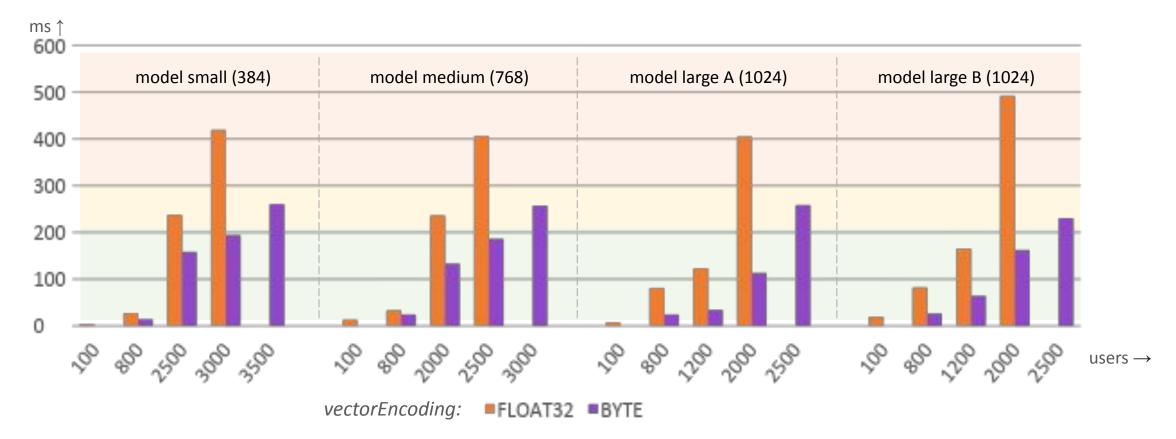


Expectations: more simultaneous users means higher avg latency

Simultaneous user on query latency

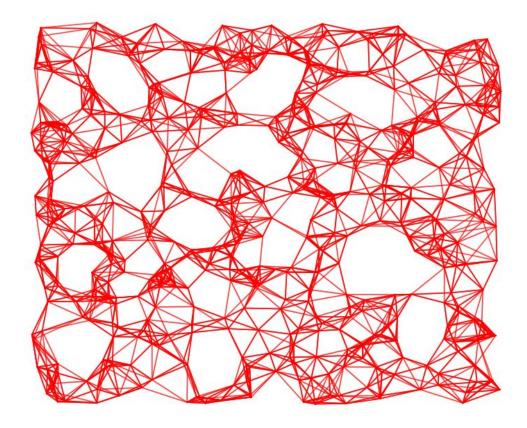
Wolters Kluwer

avg latency for simultaneous users & vectorEncoding



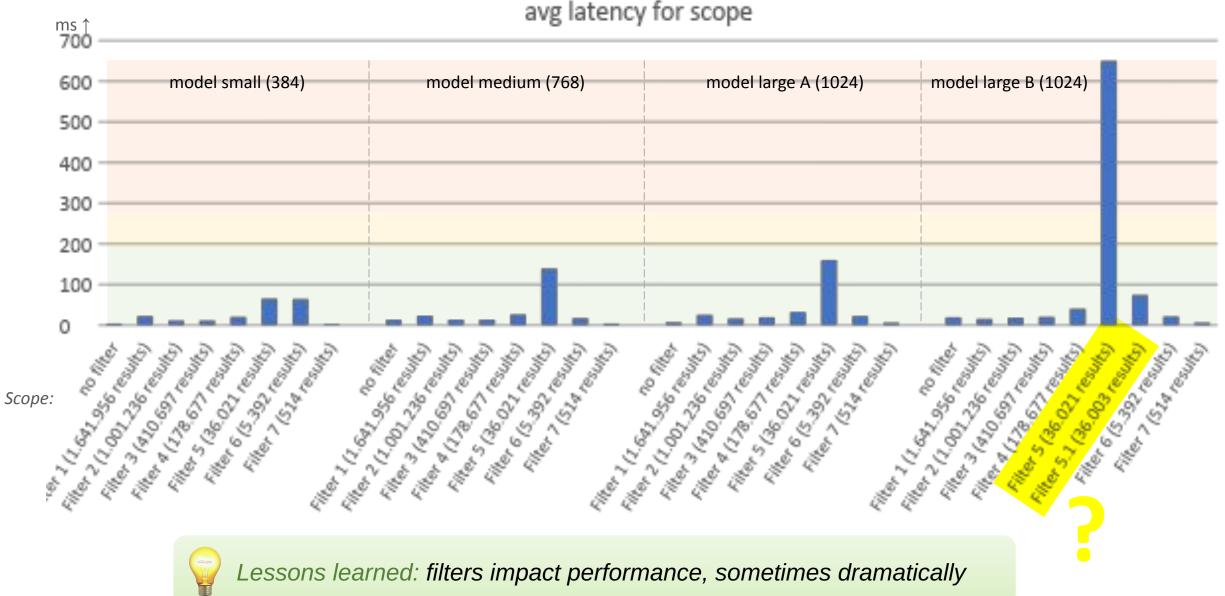
Lessons learned: encoding vector values as BYTE i.s.o. FLOAT32 is an excellent way to handle bigger stress (up to thousands of QPS)

Filtering



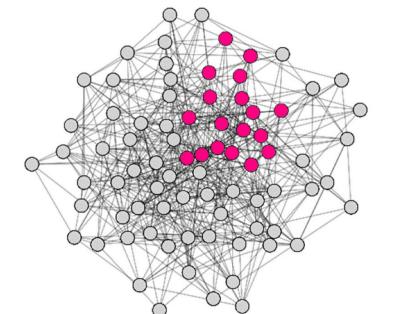
Expectation: filtered searches are slower than unfiltered.

Filtering on query latency



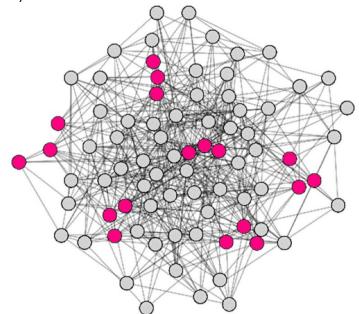
Filter 5 (36.021 results) Avg latency: 650 ms

fq=folder_s:("JTN01_deconstruced")



Filter 5.1 (36.003 results) Avg latency: 74 ms

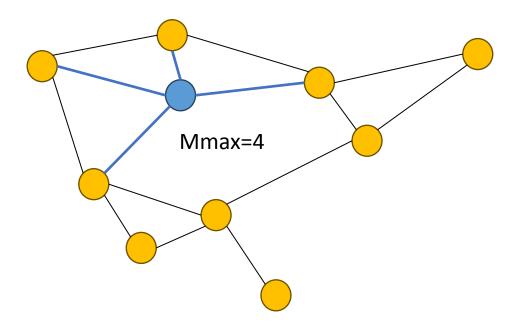
fq=docfolder:("x463" OR "x494" OR "x548" OR "x708" OR "x772" OR "x773" OR "x370" OR "x424" OR "x541" OR "x926" OR "x272" OR "x562" OR "x817" OR "x925" OR "x213" OR "x23" OR "x317" OR "x321" OR "x511" OR "x55")



Lessons learned: the narrowness of a filter drives latency but also the distribution of the filtered candidates

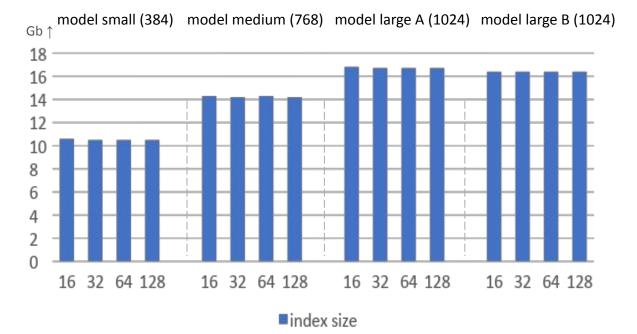
hnswMaxConnections

hnswMaxConnections (a.k.a. Mmax or just M) defines the maximum amount of connections each node in the graph could get

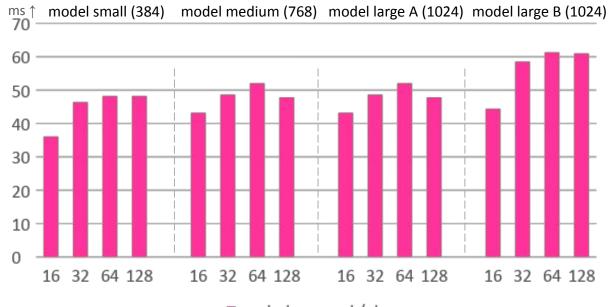


hnswMaxConnections on index metrics

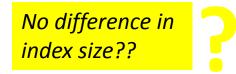
index size for hnswMaxConnections



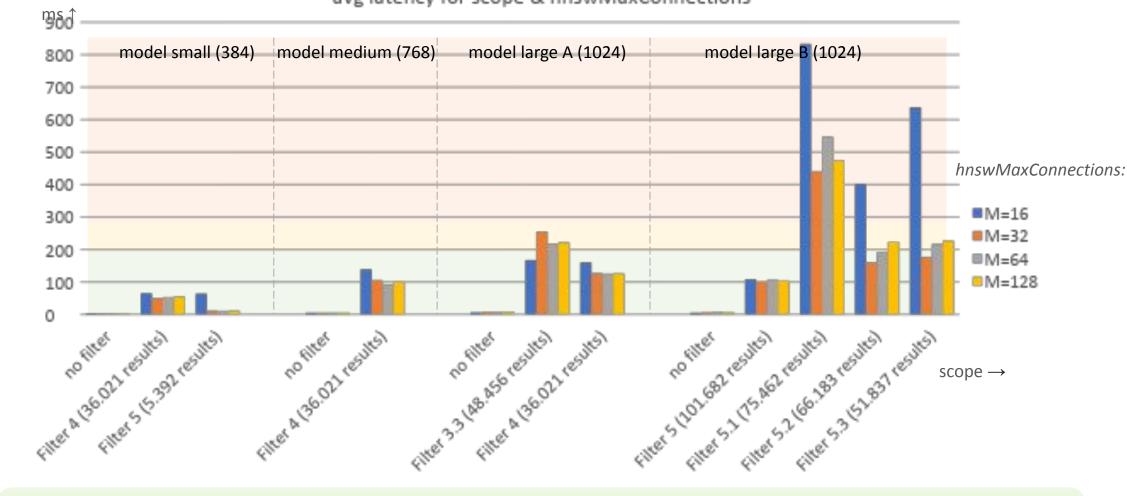
avg index speed / doc for hnswMaxConnections



avg index speed / doc



hnswMaxConnections on query latency



avg latency for scope & hnswMaxConnections

Lessons learned: a higher hnswMaxConnections is not an universal performance booster but could help in some filter scenarios

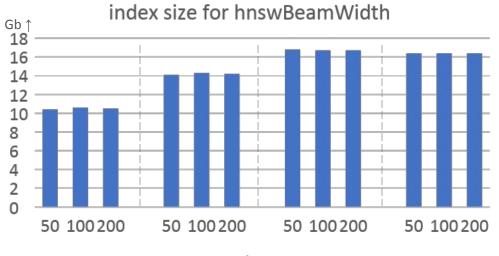
hnswBeamWidth

hnswBeamWidth (a.k.a. ef_construction) defines the size of the candidate list used during the index building process

#	Node ID	Distance score
1	985137491	0.2345
2	092475819	0.1586
3	875193457	0.0843
4	183975913	0.0811
5	985159819	0.0770
100	198357914	0.0685

Expectations: a higher hnswBeamWidth slows down the index building process and shouldn't impact avg query latency (but improves relevancy)

hnswBeamWidth on index metrics



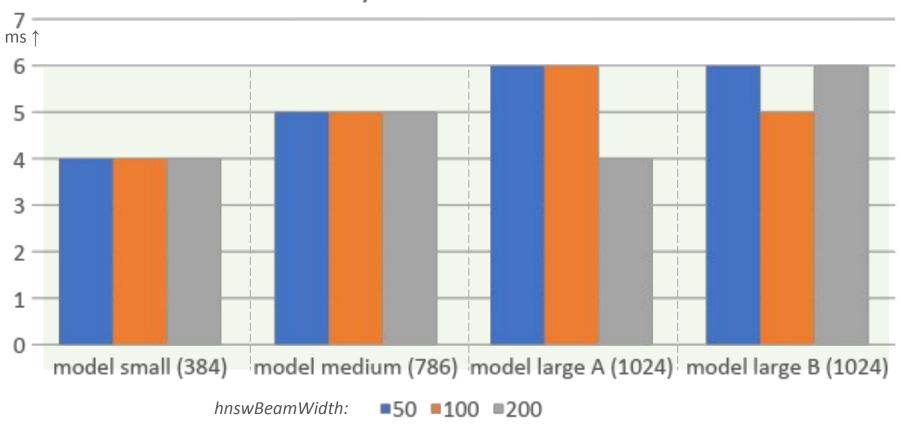
index size

avg index speed / doc for hnswBeamWidth

Why does it take longer to index with 50 than with 100?

Lessons learned: hnswBeamWidth has no impact on index size but no clear correlation with index speed

hnswBeamWidth on query latency

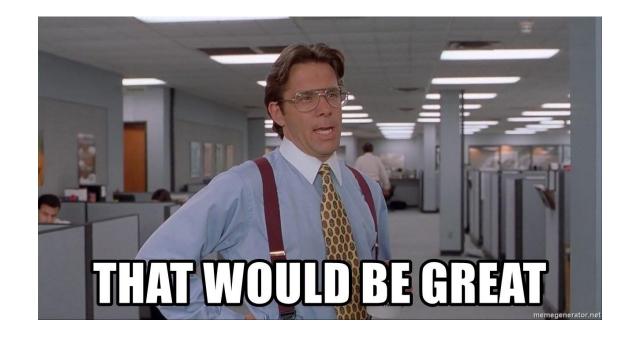


latency for hnswBeamWidth

Lessons learned: hnswBeamWidth has no impact on latency

Wish list

- No segmented HNSW graph
- Internal embedding inference
- Internal vector quantization
- Friendly hybrid search support
- Multi-valued vector fields



Thank you!

Questions?

Or contact us later:

Mohit Sidana

Search Architect Wolters Kluwer

Tom Burgmans

Technology Product Owner Search Wolters Kluwer