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Low cost

Hi speed Hi quality

Introduction 

preparing for here

Vector search enables searching for meaning. It has great potential for information retrieval. 
Let’s pierce through the hype and get prepared for production-like use cases. 
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The defaults for performance testing embedding inference

Query test set

# of queries 1000

Queries sizes (in tokens) varying between 4 and 32

Queries text English phrases

System under test

EC2 type g4dn.xlarge

CPU cores 4

GPU 1

Total Memory 16 Gb

Load test settings

# of threads 100

Pause between transactions 1000 ms

Duration per test 5 min

Model/Vector conversions

ONNX yes

Vector to numpy yes

Vector normalized to unit length No

Quantized to int8 No

Graph Optimization No

Sentence transformer models

Small (384 dimensions) tavakolih/all-MiniLM-L6-v2-pubmed-full

Medium (768 dimensions) pritamdeka/S-PubMedBert-MS-MARCO

Large A (1024 dimensions) E5-large-v2

Large B (1024 dimensions) thenlper/gte-large
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Lessons learned: GPU is optimal for embedding inference tasks 

avg latency for processor

Processing Unit on embedding inference latency

ms ↑ model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)

Processor:
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ms ↑ 

# of tokens:

7986 80726371 6441

avg latency for text length

Text length on embedding inference latency

Lessons learned: text length has a linear relationship with embedding inference latencies   

model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)
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Simultaneous users on embedding inference latency

ms ↑ 

# of users:

avg latency for users

model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)

6778 6749

Lessons learned: # of threads has an exponential relationship with embedding inference latencies 
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Lessons learned: ONNX conversion is a great performance booster

avg latency for ONNX conversion

ONNX conversion on embedding inference latency

8



Still in progress....

• Graph optimizations
• Constant Folding
• Redundant node eliminations
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• Model quantization 
• Float32 to Int8 
• Binary quantization 

• Scaling out the embedding service

• Model conversion to TensorRT 



Sentence transformer

sentence

vector

Vector search engine

vector

search results

HNSW

Query latency = 

+

ANN searchEmbedding inference
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The defaults for performance testing ANN search

Document set

# of documents 2.600.000

Avg doc size (w/o vectors) 6,8 kb

Vectorized text English phrases

System under test

EC2 type r5.4xlarge

CPU cores 16

Total Memory 128 Gb

Memory reserved for JVM 32 Gb

Solr / Lucene version 9.3.0 / 9.7.0

Shards 1

Replicas per shard 1

Segments per collection 1 (fully optimized)

Warmed up memory yes

Load test settings

# of threads 100

Pause between transactions 1000 ms

Duration per test 15 min

Vector of every query is unique Yes

k 50

Embedding inference included No

Field(type)

indexed true

stored false

Class solr.DenseVectorField

similarityFunction euclidean

vectorEncoding FLOAT32

hnswMaxConnections 16

hnswBeamWidth 100

Sentence transformer models

Small (384 dimensions) tavakolih/all-MiniLM-L6-v2-pubmed-full

Medium (768 dimensions) pritamdeka/S-PubMedBert-MS-MARCO

Large A (1024 dimensions) E5-large-v2

Large B (1024 dimensions) thenlper/gte-large 11



Get you s… 
together!Not optimized Fully optimized

ms ↑ ms ↑ 

Lessons learned: avoid a segmented index for vector search 12



Gb ↑ ms ↑ 

Lessons learned: vectors as metadata have a big impact on index size and index speed 

Indexing 2.6M documents with vectors and other metadata

Vector length on index metrics
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ms ↑ 

# of documents:

avg latency for # of indexed docs

model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)

Lessons learned: vector search could perform well for large content sets  

Vector length, # of documents on query latency

3 segments i.s.o. 1

14



ms ↑ 

Collections:

Lessons learned: not a problem to query multiple collections under high load… 
as long as they all fit into memory.

Simultaneous collections on query latency

117810

15



k

q={!knn f=vectorfield topK=50}[-0.32371908, -0.49656674, …]&rows=10 

k not only defines the (maximum) number of results, but also impacts relevancy!  
The higher k, the more likely that the nearest neighbours are in the top results.

k = the number of approximate nearest neighbours to return

Expectation: higher k means higher avg latency
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ms ↑ 

k:

Lessons learned: don’t make k higher than needed for acceptable relevance.

K on query latency
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SimilarityFunction

euclidean cosine dot_product

Measures distance angle projection

Notation ||a - b|| (a * b) / (|a| * |b|) (a * b)

Expectation: dot_product is fastest, then euclidean, and cosine the slowest
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model small (384) model medium (768) model large A (1024) model large B (1024)

avg latency for k & similarityFunction
ms ↑ 

k → 

similarityFunction:

Lessons learned: dot_product is the best performing. 
Cosine is slowest for low k values, euclidean is slowest for high k values

SimilarityFunction on query latency
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VectorEncoding

-0.21449316, -0.7045389, -0.67822456, -0.29824427, -0.23921804, -0.0809364, 
-0.5233864, 0.7305913, 0.09852978, 0.50574046, 0.3282113, 0.2059273, 
-0.031108191, 0.035400968, -0.22698092, -0.32095635, 0.21415716, 
0.09343966, 0.08683256, 0.19313174, 0.63785744, 0.298874, -0.28171337, 
0.18531613, -0.6641149, 0.19386779, -0.31794095, 0.4402138, 0.3466606, 
-0.2858599, -0.22758806, 0.5094929, 0.046053726, 0.75082016, -0.07399338, 
-0.2844224, 0.40751144, -0.20799315, 0.14701228, -0.08118942, 0.50932866, 
-0.28915992, 0.19562256, 0.21961893, 0.20695217, 0.10814471, 0.2393254, 
-0.8819913, 0.16113488, -0.5311082, -0.1953351, -0.13989331, 0.10564095, 
0.40680933, 0.042414997, 0.07088098, -0.020308852, -0.0022723621, 
-0.043205384, 0.12104646, 0.08444527, 0.64572316, 0.08393095, -0.19806932, 
-0.04344313, 0.4255652, -0.42429543, -0.41475034, -0.36487082, -0.09986199, 
-0.13209495, 0.06342443, 0.027432332, -0.27986363, 0.3010312, 
-0.103268646, 0.37407556, 0.11932395, -0.58556277, 0.059918627, 0.4299334, 
0.4327116, 0.101633854, -0.05603434, -0.36993638, 0.13854954, 0.34047017, 
0.20950834, 0.34301245, 0.048450783, 0.50535196, 0.044725284, 
-0.17060715, -0.37688974, 0.20206492, 0.04468606, 0.14183544, -0.2736002, 
-0.0658742

-3, -4, -7, 2, -7, 2, -10, 5, 8, 4, 2, -8, -12, 7, -9, 8, -20, -1, 1, -7, 
-4, 7, 2, 1, -9, 0, 2, -3, -1, -3, -5, 11, 4, 8, 0, 4, -2, 4, 17, 1, 0, -1, 
-1, 6, 2, 4, -4, -6, 1, -2, -2, -2, -15, 5, 1, 1, -7, -6, 6, -2, 8, -3, -14, 
9, 20, -5, 10, 0, 3, 6, 2, 1, 0, 10, 8, 5, -6, 5, 5, -4, -1, 8, 4, 8, 7, -6, 
4, 3, -11, 3, -7, -11, 3, -2, -8, 6, -2, -2, -2, -15, 5

FLOAT32 BYTE

Scalar Quantization:

Maintaining the angle
Maintainting the relative distance

Expectation: both index size and avg query latency are lower with BYTE compared to FLOAT32
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Gb ↑ ms ↑ 

Lessons learned: encoding vector values as BYTE i.s.o. FLOAT32 could greatly reduce the 
index size, especially for large vectors 

model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)

model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)

index size for vectorEncoding avg index speed / doc for vectorEncoding

VectorEncoding on index metrics
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ms ↑ 

k → 

vectorEncoding:

model small 
(384)

model medium 
(768)

model large A 
(1024)

model large B 
(1024)

Lessons learned: encoding vector values as BYTE i.s.o. FLOAT32 is an excellent way to lower 
latencies especially for high k values 

vectorEncoding on query latency
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Stress test

Expectations: more simultaneous users means higher avg latency 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ms ↑ 

users → 

vectorEncoding:

model small (384) model medium (768) model large A (1024) model large B (1024)

Lessons learned: encoding vector values as BYTE i.s.o. FLOAT32 is an excellent way to handle 
bigger stress (up to thousands of QPS)

avg latency for simultaneous users & vectorEncoding

Simultaneous user on query latency
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Filtering

Expectation: filtered searches are slower than unfiltered. 
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ms ↑ 

Scope:

model small (384) model medium (768) model large A (1024) model large B (1024)

Lessons learned: filters impact performance, sometimes dramatically 
?

Filtering on query latency
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Filter 5 (36.021 results) 
Avg latency: 650 ms

fq=folder_s:("JTN01_deconstruced") 

Filter 5.1 (36.003 results)
Avg latency: 74 ms

fq=docfolder:("x463" OR "x494" OR "x548" 
OR "x708" OR "x772" OR "x773" OR "x370" 
OR "x424" OR "x541" OR "x926" OR "x272" 
OR "x562" OR "x817" OR "x925" OR "x213" 
OR "x23" OR "x317" OR "x321" OR "x511" OR 
"x55")
 

Lessons learned: the narrowness of a filter drives 
latency but also the distribution of the filtered candidates
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hnswMaxConnections

Mmax=4

hnswMaxConnections (a.k.a. Mmax or just M) defines the maximum amount of connections each 
node in the graph could get

Expectations: more connections means slower index times, bigger indexes and lower avg query latency
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No difference in 
index size??

ms ↑ model small (384) model medium (768) model large A (1024) model large B (1024)
Gb ↑ 

model small (384) model medium (768) model large A (1024) model large B (1024)

?

index size for hnswMaxConnections avg index speed / doc for hnswMaxConnections 

hnswMaxConnections on index metrics
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ms ↑ 

scope → 

hnswMaxConnections:

model small (384) model medium (768) model large A (1024) model large B (1024)

Lessons learned: a higher hnswMaxConnections is not an universal performance booster 
but could help in some filter scenarios 

hnswMaxConnections on query latency

30



hnswBeamWidth

Expectations: a higher hnswBeamWidth slows down the index building process and shouldn’t 
impact avg query latency (but improves relevancy)

hnswBeamWidth (a.k.a. ef_construction) defines the size of the candidate list used during the 
index building process

# Node ID Distance score

1 985137491 0.2345

2 092475819 0.1586

3 875193457 0.0843

4 183975913 0.0811

5 985159819 0.0770

…

100 198357914 0.0685
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Gb ↑ ms ↑ 

Why does it take longer to 
index with 50 than with 100?

Lessons learned: hnswBeamWidth has no impact on index size 
but no clear correlation with index speed

?

hnswBeamWidth on index metrics
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ms ↑ 

hnswBeamWidth:

Lessons learned: hnswBeamWidth has no impact on latency 

hnswBeamWidth on query latency
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Wish list

• No segmented HNSW graph

• Internal embedding inference

• Internal vector quantization

• Friendly hybrid search support

• Multi-valued vector fields
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Thank you!

Questions?

Or contact us later:

Mohit Sidana
Search Architect
Wolters Kluwer

Tom Burgmans
Technology Product Owner Search
Wolters Kluwer 35


