
The Search Relevance Conference

2023.04.25

#haystackconf www.haystackconf.com

Trey Grainger

Relevance in the Age of Generative Search

Chief Technology Officer

• Previously:
• Chief Algorithms Officer & SVP of Engineering @
• Director of Engineering @

• Georgia Tech – MBA, Management of Technology
• Furman University – BA, Computer Science, Business, & Philosophy
• Stanford University – Information Retrieval & Web Search

Other fun projects:
• Author of AI-Powered Search and Solr in Action.
• Numerous Search & Data Science Research publications
• Lucene / Solr contributor

Trey Grainger

+
Founder@ CTO@

About Me

http://aipoweredsearch.com/
http://solrinaction.com/

docker run presearch/node
–e REGISTRATION_CODE=XXXXXXX

Presearch Decentralized Node Network

Buy the book @ http://aiPoweredSearch.com

AI-Powered Search

AMA tomorrow morning:
• Trey Grainger
• Doug Turnbull
• Max Irwin

(35% Discount Code: ctwhaystack23)

• Terminology:
• Dense Vectors vs. Sparse Vectors
• Large Language Models
• Foundation Models

• Generative Search
• Emerging Opportunities

Agenda

Thought Vectors
(aka embeddings)

The nature of language

Sentence Embeddings:
[2, 3, 2, 4, 2, 1, 5, 3]
[5, 3, 2, 3, 4, 0, 3, 4]
. . .

Document Embedding:
[4, 1, 4, 2, 1, 2, 4, 3]

Word/Phrase Embeddings:
[5, 1, 3, 4, 2, 1, 5, 3]
[4, 1, 3, 0, 1, 1, 4, 2]
. . .

Paragraph Embeddings:
[5, 1, 4, 1, 0, 2, 4, 0]
[1, 1, 4, 2, 1, 0, 0, 0]
. . .

Thought Vectors

apple caffeine cheese coffee drink donut food juice pizza tea water … term N

cappuccino 0 0 0 0 0 0 0 0 0 0 0 ...

apple 1 0 0 0 0 0 0 0 0 0 0 ...

juice 0 0 0 0 0 0 0 1 0 0 0 ...

cheese 0 0 1 0 0 0 0 0 0 0 0 ...

pizza 0 0 0 0 0 0 0 0 1 0 0 ...

donut 0 0 0 0 0 1 0 0 0 0 0 ...

green 0 0 0 0 0 0 0 0 0 0 0 ...

tea 0 0 0 0 0 0 0 0 0 1 0 ...

bread 0 0 1 0 0 0 0 0 0 0 0 ...

sticks 0 0 0 0 0 0 0 0 0 0 0 ...

exact term lookup in inverted indexquery

Single Term Searches (as a Vector)

Combined Vector

query

Multi-term Query Vectors

juice 0 0 0 0 0 0 0 1 0 0 0 ...

apple 1 0 0 0 0 0 0 0 0 0 0 ...

+

apple juice 1 0 0 0 0 0 0 1 0 0 0 ...

apple caffeine cheese coffee drink donut food juice pizza tea water … term N

latte 0 0 0 0 0 0 0 0 0 0 0 ...

cappuccino 0 0 0 0 0 0 0 0 0 0 0 ...

apple juice 1 0 0 0 0 0 0 1 0 0 0 ...

cheese pizza 0 0 1 0 0 0 0 0 1 0 0 ...

donut 0 0 0 0 0 1 0 0 0 0 0 ...

soda 0 0 0 0 0 0 0 0 0 0 0 ...

green tea 0 0 0 0 0 0 0 0 0 1 0 ...

water 0 0 0 0 0 0 0 0 0 0 1 ...

cheese bread sticks 0 0 1 0 0 0 0 0 0 0 0 ...

cinnamon sticks 0 0 0 0 0 0 0 0 0 0 0 ...

exact term lookup in inverted indexquery

Multi-term Searches

VS

So far, these look almost identical…

Keyword Search Thought Vectors

Then comes the magic… dimensionality reduction!

Phrase: Vector:
apple juice: [0, 5, 0, 0, 0, 4, 4, 3]
cappuccino: [0, 5, 3, 0, 4, 1, 2, 3]
cheese bread sticks: [5, 0, 4, 5, 0, 1, 4, 2]
cheese pizza: [5, 0, 4, 4, 0, 1, 5, 2]
cinnamon bread sticks: [5, 0, 4, 5, 0, 1, 4, 2]
donut: [5, 0, 1, 5, 0, 4, 5, 1]
green tea: [0, 5, 0, 0, 2, 1, 1, 5]
latte: [0, 5, 4, 0, 4, 1, 3, 3]
soda: [0, 5, 0, 0, 3, 5, 5, 0]
water: [0, 5, 0, 0, 0, 0, 0, 5]

Ranked Results: Green Tea
0.94 water

0.85 cappuccino

0.80 latte

0.78 apple juice

0.60 soda

… …

0.19 donut

Vector Similarity Scores:

Vector Similarity (a, b):
cos(θ) = a · b

|a| × |b|

Ranked Results: Cheese
Pizza
0.99 cheese bread sticks

0.91 cinnamon bread sticks

0.89 donut

0.47 latte

0.46 apple juice

… …

0.19 water

Vector Similarity Scoring

Encoder Embeddings

Documents

[0.11, 4.02, 0.00, 1.10, 0.00, … 2.54]

Transformers for Search
Queries

Document Vectors

[0.12, 5.04, 0.02, 0.93, 0.00, … 2.34]
Query Vector

[0.0, 99.04, 0.01, 4.93, 1.00, … 3.43]
[0.12, 5.04, 0.01, 0.73, 0.40, … 2.30]
[0.40, 4.43, 0.02, 0.89, 0.01, … 2.33]

. . .

similarity (
query_vector,
doc_vector)

Input to
Thought Vector

Comparing Approaches
User’s Query:
machine learning research and development Portland, OR software
engineer AND hadoop, java

Keyword Search:
(machine AND learning AND research AND development AND portland)
OR (software AND engineer AND hadoop AND java)

Knowledge Graph Search:
"machine learning"^10 OR "data scientist" OR "data mining" OR "artificial intelligence")
AND ("research and development"^10 OR "r&d") AND
AND ("Portland, OR"^10 OR "Portland, Oregon" OR {!geofilt pt=45.512,-122.676 d=50 sfield=geo})
AND ("software engineer"^10 OR "software developer")
AND (hadoop^10 OR "big data" OR hbase OR hive) AND (java^10 OR j2ee)

Thought Vector Search:
vector_cosine(vectors_v, "0.21, 6.07, 0.01, 0.43, 0.0, … 1.53", max)

How I used to approach search…

https://atlas.nomic.ai/map/stablediffusion

Stable Diffusion Vector Space (image modality)

Sparse vs. Dense Vector Retrieval

Term Expansion
(Traditional keyword search with
model-based token expansion)

Token Matching
(Traditional keyword /
multi-field search)

Sparse Retrieval
+ Dense Re-ranking
(Traditional search for recall +
re-rank results with embeddings)

Pure Dense
Vector Search
(Semantic search
using only embeddings)

Hybrid Sparse
Retrieval + Dense Vector Search
(Traditional search + vector search
in parallel affecting recall)

• tf-idf
• BM25
• docsets

• Semantic Knowledge Graphs
• SPLADE
• Explicit Knowledge Graphs
• Ontology / Taxonomy /

Synonyms / Misspellings

• Retriever / Reader Q&A
• Personalization /

Collaborative Filtering
• Learning to Rank

• Vector Similarity
• ANN

Multimodal Vector Search

Multimodal Vector Search

Image
Encoder

Layer
[0.19, 82.3, 0.02, 0.0, 0.0, 99.1, ...],

... "but I like to be
here. Oh, I like it
a lot!" said the
Cat in the Hat to
the fish in the
pot…

Text
Encoder

Layer

[0.00, 1.3, 26.9, 0.23, 0.0, 1.3, ...]]

Collaborative
User Signals

Encoder Layer[[0.00, 1.3, 26.9, 0.23, 0.0, 1.3, ...],

[0.00, 1.3, 26.9, 0.23, 0.0, 1.3, …, 82.3, 0.02, 0.0,
0.0, 99.1, ..., 0.00, 1.3, 26.9, 0.23, 0.0, 1.3, ...]

Multimodal Encoder /
Dimensionality Reduction

Concatenate

Multimodal Vector Search

childrens cat book

+ cat

cat in the hat movie - dr seuss

Dr seuss elephant stuffed animal

Generative Search

What is generative search?

Traditional vs. Generative Search

Info Boxes
(Show pre-vetted
answers from sources)

Search Results
(“10 blue links”,
show sources only)

Extractive
Question Answering
(Extract answers from
sources in real-time)

New Content Generation
(Make up new content on the fly)

Abstractive Question
Answering / Summarization
(Generate summaries of
answers from sources)

Extractive Question Answering

Abstractive Question Answering / Summarization
Step 1: Execute a search to find most relevant results.
Step 2: Prompt to LLM to summarize search results:

Prompt:
Web search results:
[1] "A large language model, or LLM, is a deep learning algorithm that can recognize, summarize, translate,
predict and generate text and other content based on knowledge gained from massive datasets."
URL: https://blogs.nvidia.com/blog/2023/01/26/what-are-large-language-models-used-for/

[2] A large language model (LLM) is a language model consisting of a neural network with many parameters
(typically billions of weights or more), trained on large quantities of unlabelled text using self-supervised
learning. LLMs emerged around 2018 and perform well at a wide variety of tasks. This has shifted the focus of
natural language processing research away from the previous paradigm of training specialized supervised
models for specific tasks.
URL: https://en.wikipedia.org/wiki/Large_language_model
…

Instructions:
Using the provided web search results, write a comprehensive reply to the given query.

Make sure to cite results using [[number](URL)] notation after the reference.

If the provided search results refer to multiple subjects with the same name, write
separate answers for each subject.

Query: What is a large language model?

Results:

A large language model (LLM) is a deep learning algorithm
that can recognize, summarize, translate, predict, and
generate text and other content based on knowledge
gained from massive datasets [1]. It consists of a neural
network with many parameters (typically billions of
weights or more) and is trained on large quantities of
unlabelled text using self-supervised learning [2]. LLMs
emerged around 2018 and have performed well at a wide
variety of tasks, shifting the focus of natural language
processing research away from the previous paradigm of
training specialized supervised models for specific tasks
[2]. One example of a LLM is ChatGPT, which uses a
specific type of reinforcement learning called
"Reinforcement Learning from Human Feedback (RLHF)"
[3].

https://blogs.nvidia.com/blog/2023/01/26/what-are-large-language-models-used-for/
https://en.wikipedia.org/wiki/Large_language_model
(https:/en.wikipedia.org/wiki/Large_language_model)
https://www.mlq.ai/what-is-a-large-language-model-llm/

Imagine the search engine changing images or generating
new images on the fly in your search results…

Useful: Problematic:

Which of these results is better?

Rewrite the following article, but change it to
argue that the earth is FLAT and NOT round.

• Bias in search results is a long-standing problem in
search (particularly web search).

• The FIRST results were better because they were
faithfully pulled from actual documents and not
manipulated / falsified by the search engine.

• But what happens when SEO spam morphs into
language model spam?

So which result was “better”?

But even the documents need nonsense filters…

Emergent behavior in foundation models?

Emergent Behavior
• …

• Subatomic particles

• Atoms
• Molecules

• Cellular components (DNA, mitochondria, etc.)
• Cells

• Organs

• Person
• Environment (physical world, nature, buildings,)

• Communication networks (community, internet)
• Planet

• Solar System

• Universe
• …

The future evolution of foundation models

• Though exercise: What does it mean to be conscious?
• What all do humans experience that foundation models can’t (currently)?

• Touch – sensing heat, pressure, gravity of environment
• Sight – sensing lights / colors of environment
• Hearing – sensing sound waves of environment
• Smell/taste – sensing chemicals of environment
• Thinking – Integrating all signals from

environment, planning and taking
actions on environment

• Dreaming…
• Self-determination…

HYDE

• Step 1: Uses generative model (i.e. GPT) to hallucinate an answer from the
prompt
• Insight: the answer should be in the approximate vector space of the real answer.

• Step 2: Use the embedding for the generated answer to find the real
answer in the search engine (cosine similarity, etc.).

Training

• Training the LLM typically requires:
• massive amounts of data (usually much of the web text and/or images)
• massive amounts of compute power
• Massive number of layers and parameters in the neural network
• Lots of $$$ for the above

• The training process performs lossy compression on much of human knowledge
into a neural network from which facts and relationships (words, linguistics,
relationships, etc.) can be decompressed back out and reasoned about later.

• Training is a self-supervised process – throw in a bunch of data and it “models the
provided human knowledge” like a brain.

Fine-tuning

• The process whereby the foundation model can be supplied with additional
domain-specific data or instructions.

• For example, if you want the model to follow instructions or to act like a person or a chatbot,
you can train the model with responses to input that reflect those behaviors.

• Fine-tuning typically adds a few additional layers to the neural network of the
base foundational model to help represent the additional data or behavior for
which the model is being fine-tuned.

• This enables the fine-tuned model to extend the capabilities of the original model with a
much smaller training process focused on specific data or patterns.

Prompting (aka “in-context learning”)

• The final state of "training" a model, but it actually occurs at inference time as
opposed to training time.
• Prompting is the process of supplying input to the language model to get an

output.
• You can supply as much context in the prompt as the model allows, which means

that the prompt can be manipulated to affect the output.
• You can think of prompting as “real-time fine tuning”, as you can pass new content to be

analyzed or new instructions to be followed.
• The prompt is only used within the current request / session, it is not saved to the model for

future use.

Rules of Thumb

• For specific use cases, fine-tuning almost always returns the best results.

• BUT from a product standpoint, if the model is good enough at solving the problem
generically, it’s better (more flexible) to pass in new data in the prompt.

• Longer term, we’ll end up with “this LLM is good at finance data”, “this LLM is good at
medical data”, etc., with the data to be analyzed passed in as part of the prompt for in-
context learning.

• Because GPT models are recursive (they process each subsequent tokens based on the
context of all past tokens), you can improve the quality of the output by having the
prompt generate more relevant context.

• i.e. “think step by step”, “answer clearly and specifically”, etc.

Web Search
• The most active innovation currently.

• Bing, Presearch, You.com, Neeva, Google (soon) and new entrants.

• New expectation: results summarization, citations from search results, generative answers.

• Web indexes are becoming “caches of the internet” for future, data-hungry LLMs
• Google’s API is largely closed, and Bing just increased their search API price by 400%
• Massive opportunity for emerging players to service the growing data need

• Emerging: Multi-step pipelines. Future use cases:
• “Find a tapas restaurant with an opening at 6pm for 5 people.”
• Find a the cheapest flight to the Haystack conference and the day before and coming home

the weekend after, and book the closest hotel under $200/night.”

• The rise of dense vector search and high-quality web-trained LLMs/embeddings and open source
models provide a real opportunity for decentralized, open source web search in the future
(shameless plug for Presearch).

Ecommerce
• Multimodal search (text + image) becoming more common
• Personalization combining user signals + product embeddings
• Chat-based experiences to assist the shopper being experimented with,

but lots of “item name” and “browse” behavior that is unlikely to transition
seamlessly (or at all).

• So many tools already available (signals boosting, learning to rank, landing
pages, well-tuned lexical matching) that LLMs aren’t as clear of an out-of-
the-box winner.

• Fine-tuning will be necessary, since a site’s specific and up-to-date product
data may not be well-represented in LLMs trained on the general web.

Enterprise Search
• Biggest commercial opportunity right now
• Most companies have strict security filtering requirements (Role-based-access),

making training and fine-tuning on enterprise data often a bad idea.
Approach:
• 1. Search with security filtering
• 2. Send results to LLMs as context for real-time conversations / insights
• Index many datasources (excel files, PDFs, CSVs) and even expose raw

API / DB access in select cases
• User can “have a conversation with a PDF or excel file”
• Under what circumstances could the Jones contract be terminated?
• If I took [the second option] by the end of the month, how much would they

be required to refund?
• Historically, most search innovation has been driven by web and ecommerce

search, with enterprise lacking behind due to lower user signals and no direct tie
to revenue. LLMs have the opportunity to create large leaps forward for
enterprise search over the coming years.

Trey Grainger
trey@presearch.io
@treygrainger

Other presentations:
http://www.treygrainger.com http://aiPoweredSearch.com

http://solrinaction.com

Books:

Thank You! (35% Discount Code: ctwhaystack23)

http://www.treygrainger.com/

