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Billion-scale hybrid retrieval
in a single query



whoami
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● Co-Founder & CEO @ TopK

● ex-Pinecone engineering lead 
(data plane & control plane)

● ex-Shopify risk algorithms (fraud 
detection & forecasting)

● Game theory and adversarial ML 
research @ CTU Prague
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Vector databases are
the wrong abstraction



Uncorrelated vector & metadata distributions
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Inflexible scoring
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● Score engineering at query time is important to optimize relevance
○ Keyword boosting
○ Prioritizing more recent documents
○ Boosting “nearby” results (geosearch)
○ …

● Vector database indexes approximate a specific score (e.g. cosine 
similarity)

● Modifying the scoring objective at query time is impossible without 
rebuilding the entire index (slow and expensive)



Expensive writes
6

● Writes or deletes introduce data distribution shift

● Vector indexes need to be periodically rebuilt on new data to maintain 

recall

● Indexing throughput is negatively impacted due to frequent rebuilds



Operational complexity
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● Coupled compute-storage

○ Requires replication for durability (networking cost)

○ Hard to optimize for storage heavy and query heavy workloads

● Coupled write-read path

○ Unpredictable tail latencies

○ Difficult to scale writes and reads separately
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What we built instead



Unified retrieval engine
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● Custom query engine (reactor)
○ Dense and sparse vectors (f32, u8, i8, binary)
○ Supports multi-vector retrieval
○ Lexical search with BM25 scoring
○ Custom scoring at query time
○ Efficient filtering that preserves results quality

● Fully-managed cloud-native search database
○ Separate compute and storage
○ Separate read path and write path
○ Storage format optimized for object storage as the primary medium



Least common denominator dependencies
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● Object storage (S3, …)
○ Our primary and only durable storage
○ 99.99% availability, 11 9s of durability
○ Cheap ~0.023 $/GB
○ Virtually infinite capacity and r/w throughput
○ Support for conditional writes (CAS semantics)

● Compute (EC2, …)
○ Local NVMe SSDs with >GB/s throughput and sub-1ms I/O latency
○ High bandwidth networking
○ ARM >> x86 (with custom NEON kernels), DDR5 memory
○ Abstracted through k8s
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Write path
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● WAL (Write-Ahead Log)
○ Leverages object storage with CAS (S3, GCS, Azure Blob, …)
○ Linearizable semantics => strong consistency
○ No external dependencies for sequencing
○ Achieves ~80MB/s throughput per collection

● Compaction
○ Produces read-optimized version of WAL segments
○ Garbage collection of deleted & updated records
○ Garbage collection of old data files and log files
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.bob
(just a bunch of buffers)



Problems with .parquet
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● Built for spinning disks (lots of 
serial dependencies in I/O)

● Couples I/O granularity with 
metadata (stats) granularity

● No support for point reads

● Requires decoding full metadata 
to access just one column

● Uses off-the-shelf compression 
(e.g. snappy, zstd)



.bob columnar layout
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● Decouples logical & physical file 
structure.

● Physically, all data is stored as buffers.

● Logically, rows in the file are organized 
as columns (per field) split into blocks.

● Achieves optimal I/O size and stats 
granularity for pruning.

● Uses Apache Arrow and type-specific 
compression for zero-copy/decode 
execution.

● Supports point reads
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reactor
(where datafusion happens)
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Query lifecycle
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● User queries are parsed to logical plan that 
describes what should be computed

● Logical plans are compiled and optimized 
against a specific schema.

● Resulting physical plan describes how the 
computation happens.

● Physical nodes can read local or remote data 
streamed from other nodes (e.g. executor -> 
router).



Features
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● Works with dynamic schemas (TopK has schema-on-write model)

● Uses Apache Arrow as in-memory format

● Native support for external indexes (no need to join)

● Projection pushdown

● Predicate pushdown with block pruning

● Zero-copy execution for buffers already cached in memory

● Distributed execution with O(100) nodes
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But is it fast?



1m documents
dense sparse



10m documents
dense sparse



100m documents
dense sparse



1B documents
dense sparse
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How about quality?
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What’s next?



Search is changing
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Thanks
topk.io


