
1

Billion-scale hybrid retrieval
in a single query



whoami
2

● Co-Founder & CEO @ TopK

● ex-Pinecone engineering lead 
(data plane & control plane)

● ex-Shopify risk algorithms (fraud 
detection & forecasting)

● Game theory and adversarial ML 
research @ CTU Prague



3

Vector databases are
the wrong abstraction



Uncorrelated vector & metadata distributions
4



Inflexible scoring
5

● Score engineering at query time is important to optimize relevance
○ Keyword boosting
○ Prioritizing more recent documents
○ Boosting “nearby” results (geosearch)
○ …

● Vector database indexes approximate a specific score (e.g. cosine 
similarity)

● Modifying the scoring objective at query time is impossible without 
rebuilding the entire index (slow and expensive)



Expensive writes
6

● Writes or deletes introduce data distribution shift

● Vector indexes need to be periodically rebuilt on new data to maintain 

recall

● Indexing throughput is negatively impacted due to frequent rebuilds



Operational complexity
7

● Coupled compute-storage

○ Requires replication for durability (networking cost)

○ Hard to optimize for storage heavy and query heavy workloads

● Coupled write-read path

○ Unpredictable tail latencies

○ Difficult to scale writes and reads separately



8

What we built instead



Unified retrieval engine
9

● Custom query engine (reactor)
○ Dense and sparse vectors (f32, u8, i8, binary)
○ Supports multi-vector retrieval
○ Lexical search with BM25 scoring
○ Custom scoring at query time
○ Efficient filtering that preserves results quality

● Fully-managed cloud-native search database
○ Separate compute and storage
○ Separate read path and write path
○ Storage format optimized for object storage as the primary medium



Least common denominator dependencies
10

● Object storage (S3, …)
○ Our primary and only durable storage
○ 99.99% availability, 11 9s of durability
○ Cheap ~0.023 $/GB
○ Virtually infinite capacity and r/w throughput
○ Support for conditional writes (CAS semantics)

● Compute (EC2, …)
○ Local NVMe SSDs with >GB/s throughput and sub-1ms I/O latency
○ High bandwidth networking
○ ARM >> x86 (with custom NEON kernels), DDR5 memory
○ Abstracted through k8s



11



Write path
12

● WAL (Write-Ahead Log)
○ Leverages object storage with CAS (S3, GCS, Azure Blob, …)
○ Linearizable semantics => strong consistency
○ No external dependencies for sequencing
○ Achieves ~80MB/s throughput per collection

● Compaction
○ Produces read-optimized version of WAL segments
○ Garbage collection of deleted & updated records
○ Garbage collection of old data files and log files



13

.bob
(just a bunch of buffers)



Problems with .parquet
14

● Built for spinning disks (lots of 
serial dependencies in I/O)

● Couples I/O granularity with 
metadata (stats) granularity

● No support for point reads

● Requires decoding full metadata 
to access just one column

● Uses off-the-shelf compression 
(e.g. snappy, zstd)



.bob columnar layout
15

● Decouples logical & physical file 
structure.

● Physically, all data is stored as buffers.

● Logically, rows in the file are organized 
as columns (per field) split into blocks.

● Achieves optimal I/O size and stats 
granularity for pruning.

● Uses Apache Arrow and type-specific 
compression for zero-copy/decode 
execution.

● Supports point reads



16

reactor
(where datafusion happens)



17



Query lifecycle
18

● User queries are parsed to logical plan that 
describes what should be computed

● Logical plans are compiled and optimized 
against a specific schema.

● Resulting physical plan describes how the 
computation happens.

● Physical nodes can read local or remote data 
streamed from other nodes (e.g. executor -> 
router).



Features
19

● Works with dynamic schemas (TopK has schema-on-write model)

● Uses Apache Arrow as in-memory format

● Native support for external indexes (no need to join)

● Projection pushdown

● Predicate pushdown with block pruning

● Zero-copy execution for buffers already cached in memory

● Distributed execution with O(100) nodes



20

But is it fast?



1m documents
dense sparse



10m documents
dense sparse



100m documents
dense sparse



1B documents
dense sparse



25

How about quality?



26



27

What’s next?



Search is changing
28



29



30

Thanks
topk.io


