

The OpenSearch Experts

Smart Recall

Enhancing Local LLM Conversations with Embedding-Aware Context Retrieval

HayStack 2025

Introduction

Lucas Jeanniot

Machine Learning Engineer

Developer on the Coretex Axiom Project.

Automation Enthusiast

MSc Machine Learning @ NUI Limerick

Let's start with some assumptions on our imagined system

Our imagined system

- We have a vector database, with parsed and embedded content in OpenSearch
- We have some locally hosted LLMs, capable of single shot generation (but no existing conversational persistence)
- We have an index for creating, storing, and retrieving our single shot generations, and being able to formulate them into a "conversational" format (OpenSearch Memory Index/API)
- · We have a frontend where a user can send a query, and get a response from a Chatbot
- Optional, but nice to have: unlimited GPU power, and perfect data.

The Problem

"What did we discuss about the API design?"

"Sorry, I don't have access to previous conversations"

After 100+ exchanges: 30-50% performance degradation
Users repeat context every 3-5 messages
Critical Information lost between sessions

Why this matters now

Business Reality	Technical Challenges
78% of organizations reporting to use AI*	Context Windows filling up
Local deployments for privacy	No persistent memory
GDPR, HIPPA compliance	Expensive redundant searches

^{*}Source: McKinsey & Company, The State of Al Report (2025)

Context Loss = Productivity Lost = Money Lost

What we'll discuss today

User Query → Semantic History Retrieval → Query Rewriting

Hybrid Search → Context Integration → Response Generation

Outcomes

- Fewer retrieval failures
- Performance Improvements
- Complete conversation persistance

Features

- Privacy-first local deployment
- Automatic context management
- Intelligent query understanding

OpenSearch Memory API Foundation

The Three Pillars

```
# 1. Create Conversation (Memory Container)
def create_conversation(self, conversation_name: str) -> str:
    response = self.OPENSEARCH_CLIENT.request(
        url="_plugins/_ml/memory",
        method="POST",
        payload={"name": conversation_name},
    )
    return response["memory_id"]
```

Implementation Pattern

- Always store query AND context used
- Track source documents for transparency
- Maintain completion status

OpenSearch Memory API Foundation

Message Storage with Rich Metadata

```
def create_message(self, conversation_id: str, prompt: str) -> str:
    payload = {
        "input": prompt,
        "additional_info": {
            "is_error": False,
            "prompt_date": now().isoformat(),
            "sources": [], # Enriched after retrieval
            "search_strategy": None,
            "token_count": len(encoder.encode(prompt))
    response = self.OPENSEARCH_CLIENT.request(
        url=f"_plugins/_ml/memory/{conversation_id}/messages",
        method="POST",
        payload=payload
    return response["message_id"]
```


Create message FIRST, update after generation

OpenSearch Memory API Foundation

Three pillars together

```
# 1. Create Conversation (Memory Container)
def create_conversation(self, conversation_name: str) -> str:
    response = self.OPENSEARCH_CLIENT.request(
        url="_plugins/_ml/memory",
        method="POST",
        payload={"name": conversation_name},
    return response["memory_id"]
# 2. Store Messages with Rich Metadata
def create_message(self, conversation_id: str, prompt: str) -> str:
    payload = {
        "input": prompt,
        "additional_info": {
            "is_error": False,
            "prompt_date": now().isoformat(),
            "sources": [], # Will be enriched later
# 3. Update with Context & Sources
def update_message(self, message_id: str, response: str, sources: list):
    # Enrich with retrieved documents, scores, timestamps
```

Implementation Pattern

- 1. Create our conversation.
- 2. Create our current turn message, enrich with existing metadata.
- 3. After generation, update our message with new metadata, sources, responses to provide better context for the next turn.

Data Structure Design

Metadata from our retrieved documents

```
class ChatSource(TypedDict):
    text: str | None
    file_name: str
    file_id: str
    score: float # Relevance
    page_index: int
    modified_at: str
```

Metadata from our retrieved conversation

```
class ConversationContext:
    current_query: str
    prev_user_turn: str
    prev_assistant_turn: str
    relevant_history: str
    messages: list[Message]
```

- **DO**: Store retrieval scores and timestamps
- X DON'T: Store raw embeddings in message metadata

Semantic History Retrieval

```
def get_semantically_relevant_history(
    self,
    query_embedding: list[float],
    recent_pairs: ConversationTurns,
    similarity_top_k: int = 4,
    max_tokens: int = 256
 -> str:
    # Step 1: Generate embeddings for recent history
    hist_embeddings = self._get_history_embeddings(
        recent_pairs[-50:] # Limit to recent 50 turns
    # Step 2: Calculate cosine similarity
    sims = cosine_similarity(query_embedding, hist_embeddings)
    # Step 3: Select top-k relevant messages
    top_indices = sims.argsort()[-similarity_top_k:]
    # Step 4: Token management - critical!
    if token_count > max_tokens:
       return self._summarize(selected_texts)
    return chronological_texts
```


Pattern — Progressive Context Filtering

- 1. Try full history (if it fits in token limits) ↓
- 2. Fall back to semantic filtering

 ✓
- 3. Summarize if still too large

```
if len(encoder.encode(full_history)) <= max_tokens:
    return full_history
elif semantic_results := filter_by_similarity(history):
    return semantic_results
else:
    return aggressive_summary(history)</pre>
```


Dynamic Query Rewriting

Before/After Comparison

X Before	✓ After	
"Show me more"	"Show more Python async examples"	
"What about performance?"	"OpenSearch query performance"	
"Can you elaborate?"	"Elaborate on embedding latency"	

Transform Questions Using Context

```
if history.get("relevant_history"):
    rewritten = llm_service.rewrite_query(
        conv_ctx={k: str(v) for k, v in history.items()}
    )
    return rewritten # Context-aware query
```


Hybrid Search Architecture

```
def enhanced_document_search(self, query: str, k_nn: int = 5):
    # Step 1: Extract filename references
    filename_refs = self._extract_filename_references(query)

# Step 2: Cascading search strategy
    if filename_refs:
        results = self._search_by_filename(filename, query_embedding)
        if results:
            return results

# Step 3: Hybrid search fallback
    return self.keyword_hybrid_search(query, k_nn, query_embedding)
```

Implementation Pattern

Cascading Strategy:

Hybrid **↓**

General

Don't waste valuable context from a users query when deciding what search to perform!

Hybrid Query Structure

```
hybrid_query = {
    "queries": [
        # 1. Lexical search (BM25)
        {"match": {
            "content": {"query": query, "fuzziness": "AUTO"}
        }},
        # 2. Phrase matching (higher weight)
        {"match_phrase": {
            "content": {"query": query, "boost": 1.5}
        }},
       # 3. Vector similarity
        {"knn": {
            "embedding": {"vector": query_embedding, "k": k_nn}
        }}
```

Performance Tips:

- Filename boost (users remember filenames)
- Phrase matching boost
- Keep k_nn between 5–10

Token Management Strategies

```
class TokenManager:
    MAX_REWRITE_TOKENS = 256
                                 # For context
    MAX_SEARCH_TOKENS = 512
                                  # For retrieval
    MAX_RESPONSE_TOKENS = 2048
                                  # For generation
    def manage_context_window(self, content: str, limit: int):
        token_count = len(self.encoder.encode(content))
        if token_count <= limit:</pre>
            return content
        # Progressive degradation
        strategies = [
            self._remove_examples,
            self._summarize_middle,
            self._keep_recent_only,
            self._aggressive_summary
        for strategy in strategies:
            content = strategy(content)
            if len(self.encoder.encode(content)) <= limit:</pre>
                break
        return content
```

Implementation Pattern

- Set customizable limits on all your generations
- Like our search & history context implement progressive fallbacks in order to stay within our limits.
- Experiment with different degradation strategies

Three Layer Cache Strategy

```
# Layer 1: Embedding Cache (Most Valuable)
@lru_cache(maxsize=10000)
def get_embedding(text_hash: str) -> list[float]:
    return generate_embedding(text)

# Layer 2: Search Result Cache (24hr TTL)
search_cache = {
    "query_hash": {"results": [...], "timestamp": now(), "ttl": 86400}}

# Layer 3: Conversation Summary Cache
summary_cache[conv_id] = {
    "100_turn_summary": "...",
    "50_turn_summary": "...",
    "25_turn_summary": "..."
}
```

Caching Layers Overview

- Layer 1 Embedding Cache: Fastest + most valuable; stores embeddings in memory (@lru_cache) to avoid recomputing.
- Layer 2 Search Result Cache: Keeps query results for 24h (TTL = 86400s) to save redundant searches.
- Layer 3 Conversation Summary Cache:
 Stores rolling summaries (100/50/25 turns) to quickly recall context without reprocessing full history.

Putting it all together

Implementation Pattern

```
\bullet \bullet \bullet
async def process_turn(self, user_input: str):
    # 1. Always create message first (track everything)
    message_id = await self.memory_api.create_message(user_input)
    try:
        # 2. Get context with timeout
        context = await asyncio.wait_for(
            self.get_context(), timeout=2.0
        # 3. Search with fallback
        results = await self.search_with_fallback(user_input, context)
        # 4. Generate and stream
        async for chunk in self.generate_response(results):
            yield chunk
    finally:
        # 5. Always update message (even on error)
        await self.memory_api.update_message(
            message_id, status="complete" if success else "error"
```


Common Pitfalls to avoid

Not Handling overflow

```
# X BAD
messages = get_all_messages() # 00M on long conversations
#  Good
messages = get_recent_messages(limit=100)
if needs_more_context:
    summary = get_conversation_summary()
```

Ignoring search failures

Collecting metrics, measuring impact

```
class MetricsCollector:
    def track_performance(self):
        return {
            # Quality Metrics
            "retrieval_precision": self.relevant_docs / self.total_retrieved,
            "context_relevance": self.cosine_sim(query, context),
            # Performance Metrics
            "avg_response_time": statistics.mean(self.response_times),
            "cache_hit_rate": self.cache_hits / self.total_requests,
            # Business Metrics
            "searches_saved": self.answered_from_memory / self.total_queries,
            "conversation_continuity": self.avg_turns_before_reset
```


Three Critical Success Factors

Store Everything, Retrieve Selectively	Hybrid Search > Pure Vector Search	Cache Aggressively, Fail Gracefully
Every turn creates a message	Users remember keywords and filenames	Embeddings are expensive. Cache them.
Semantic filtering finds relevance	Combine BM25 + vectors + metadata	Searches timeout – have fallbacks
Progressive summarization manages scale	Cascade from specific to general	Conversations overflow, summarize early

Thank You!

info@eliatra.com

eliatra

eliatra_ire

lucas.jeanniot@eliatra.com
www.linkedin.com/in/lucas-jeanniot/

