

eliatra.com

Smart Recall

Enhancing Local LLM Conversations with Embedding-Aware Context Retrieval

HayStack 2025

eliatra.com

Introduction

Lucas Jeanniot

Machine Learning Engineer
Developer on the Coretex Axiom Project.

Automation Enthusiast

MSc Machine Learning @ NUI Limerick

eliatra.com

Let’s start with some assumptions on our imagined
system

eliatra.com

•We have a vector database, with parsed and embedded content in OpenSearch

•We have some locally hosted LLMs, capable of single shot generation (but no existing
conversational persistence)

•We have an index for creating, storing, and retrieving our single shot generations, and being able
to formulate them into a “conversational” format (OpenSearch Memory Index/API)

•We have a frontend where a user can send a query, and get a response from a Chatbot

• Optional, but nice to have: unlimited GPU power, and perfect data.

Our imagined system

eliatra.com

The Problem

“What did we discuss about the API design?”

“Sorry, I don’t have access to previous conversations”

After 100+ exchanges: 30–50% performance degradation
Users repeat context every 3–5 messages
Critical Information lost between sessions

eliatra.com

Why this matters now

Context Loss = Productivity Lost = Money Lost

Business Reality Technical Challenges

78% of organizations reporting to use AI* Context Windows filling up

Local deployments for privacy No persistent memory

GDPR, HIPPA compliance Expensive redundant searches

*Source: McKinsey & Company, The State of AI Report (2025)

eliatra.com

• Fewer retrieval failures

• Performance Improvements

• Complete conversation

persistance

Outcomes

What we’ll discuss today

• Privacy-first local deployment

• Automatic context management

• Intelligent query understanding

Features

User Query Semantic History Retrieval Query Rewriting

Hybrid Search Context Integration Response Generation

eliatra.com

The Three Pillars

OpenSearch Memory API Foundation

Implementation Pattern

• Always store query AND context used

• Track source documents for transparency

• Maintain completion status

eliatra.com

💡 Create message FIRST, update after generation

Message Storage with Rich Metadata

OpenSearch Memory API Foundation

eliatra.com

Three pillars together

OpenSearch Memory API Foundation

Implementation Pattern

1. Create our conversation.

2. Create our current turn message, enrich
with existing metadata.

3. After generation, update our message
with new metadata, sources, responses
to provide better context for the next turn.

eliatra.com

Data Structure Design
Metadata from our retrieved documents Metadata from our retrieved conversation

✅ DO: Store retrieval scores and timestamps

❌ DON'T: Store raw embeddings in message metadata

eliatra.com

Semantic History Retrieval

eliatra.com

Pattern – Progressive Context Filtering
1. Try full history (if it fits in token limits) ↓

2. Fall back to semantic filtering ↓

3. Summarize if still too large

eliatra.com

Dynamic Query Rewriting
Before/After Comparison

❌ Before ✅ After

“Show me more” “Show more Python async examples”

“What about performance?” “OpenSearch query performance”

“Can you elaborate?” “Elaborate on embedding latency”

Transform Questions Using Context

eliatra.com

Hybrid Search Architecture

Cascading Strategy:

Specific ↓

Hybrid ↓

General

Implementation Pattern

💡 Don’t waste valuable context from a users query

when deciding what search to perform!

eliatra.com

Hybrid Query Structure

• Filename boost (users remember filenames)

• Phrase matching boost

• Keep k_nn between 5–10

Performance Tips:

eliatra.com

Token Management Strategies

• Set customizable limits on all your generations

• Like our search & history context implement
progressive fallbacks in order to stay within our limits.

• Experiment with different degradation strategies

Implementation Pattern

eliatra.com

Three Layer Cache Strategy
Caching Layers Overview
• Layer 1 – Embedding Cache: Fastest + most valuable; stores
embeddings in memory (@lru_cache) to avoid recomputing.

• Layer 2 – Search Result Cache: Keeps query results
for 24h (TTL = 86400s) to save redundant searches.

• Layer 3 – Conversation Summary Cache:
Stores rolling summaries (100/50/25 turns) to quickly
recall context without reprocessing full history.

eliatra.com

Putting it all together
Implementation Pattern

eliatra.com

Common Pitfalls to avoid

Not Handling overflow Ignoring search failures

eliatra.com

Collecting metrics, measuring impact

eliatra.com

Three Critical Success Factors

Store Everything,  
Retrieve Selectively

Hybrid Search > Pure Vector
Search

Cache Aggressively,  
Fail Gracefully

Every turn creates a message Users remember keywords  
and filenames

Embeddings are expensive.

 Cache them.

Semantic filtering finds relevance Combine BM25 + vectors + metadata Searches timeout – have fallbacks

Progressive summarization  
manages scale Cascade from specific to general Conversations overflow,  

summarize early

eliatra.com

Q&A

eliatra.com

Thank You!

lucas.jeanniot@eliatra.com

www.linkedin.com/in/lucas-jeanniot/

