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Let’s start with some assumptions on our imagined 
system
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•We have a vector database, with parsed and embedded content in OpenSearch

•We have some locally hosted LLMs, capable of single shot generation (but no existing 
conversational persistence)


•We have an index for creating, storing, and retrieving our single shot generations, and being able 
to formulate them into a “conversational” format (OpenSearch Memory Index/API)


•We have a frontend where a user can send a query, and get a response from a Chatbot

• Optional, but nice to have: unlimited GPU power, and perfect data.

Our imagined system
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The Problem

“What did we discuss about the API design?”

“Sorry, I don’t have access to previous conversations”

After 100+ exchanges: 30–50% performance degradation 
Users repeat context every 3–5 messages 
Critical Information lost between sessions
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Why this matters now

Context Loss = Productivity Lost = Money Lost

Business Reality Technical Challenges

78% of organizations reporting to use AI* Context Windows filling up

Local deployments for privacy No persistent memory

GDPR, HIPPA compliance Expensive redundant searches

*Source: McKinsey & Company, The State of AI Report (2025)
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• Fewer retrieval failures

• Performance Improvements

• Complete conversation 

persistance

Outcomes

What we’ll discuss today

• Privacy-first local deployment

• Automatic context management

• Intelligent query understanding

Features

User Query      Semantic History Retrieval      Query Rewriting

Hybrid Search      Context Integration      Response Generation
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The Three Pillars

OpenSearch Memory API Foundation

Implementation Pattern

• Always store query AND context used

• Track source documents for transparency

• Maintain completion status
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💡 Create message FIRST, update after generation

Message Storage with Rich Metadata

OpenSearch Memory API Foundation
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Three pillars together

OpenSearch Memory API Foundation

Implementation Pattern

1. Create our conversation.


2. Create our current turn message, enrich 
with existing metadata.


3. After generation, update our message 
with new metadata, sources, responses 
to provide better context for the next turn.
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Data Structure Design
Metadata from our retrieved documents Metadata from our retrieved conversation

✅ DO: Store retrieval scores and timestamps 


❌ DON'T: Store raw embeddings in message metadata
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Semantic History Retrieval
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Pattern – Progressive Context Filtering
1. Try full history (if it fits in token limits) ↓


2. Fall back to semantic filtering ↓


3. Summarize if still too large
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Dynamic Query Rewriting
Before/After Comparison

❌ Before ✅ After

“Show me more” “Show more Python async examples”

“What about performance?” “OpenSearch query performance”

“Can you elaborate?” “Elaborate on embedding latency”

Transform Questions Using Context



eliatra.com

Hybrid Search Architecture

Cascading Strategy:

Specific ↓ 

Hybrid ↓

General

Implementation Pattern

💡 Don’t waste valuable context from a users query 

when deciding what search to perform!
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Hybrid Query Structure

• Filename boost (users remember filenames)

• Phrase matching boost

• Keep k_nn between 5–10

Performance Tips:
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Token Management Strategies

• Set customizable limits on all your generations

• Like our search & history context  implement 
progressive fallbacks in order to stay within our limits. 


• Experiment with different degradation strategies

Implementation Pattern
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Three Layer Cache Strategy
Caching Layers Overview
• Layer 1 – Embedding Cache: Fastest + most valuable; stores 
embeddings in memory (@lru_cache) to avoid recomputing.


• Layer 2 – Search Result Cache: Keeps query results  
for 24h (TTL = 86400s) to save redundant searches.


• Layer 3 – Conversation Summary Cache:  
Stores rolling summaries (100/50/25 turns) to quickly  
recall context without reprocessing full history.
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Putting it all together
Implementation Pattern
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Common Pitfalls to avoid

Not Handling overflow Ignoring search failures
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Collecting metrics, measuring impact
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Three Critical Success Factors

Store Everything,  
Retrieve Selectively

Hybrid Search > Pure Vector 
Search

Cache Aggressively,  
Fail Gracefully

Every turn creates a message Users remember keywords  
and filenames

Embeddings are expensive.

 Cache them.

Semantic filtering finds relevance Combine BM25 + vectors + metadata Searches timeout – have fallbacks

Progressive summarization  
manages scale Cascade from specific to general Conversations overflow,  

summarize early
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Q&A
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Thank You!

lucas.jeanniot@eliatra.com 

www.linkedin.com/in/lucas-jeanniot/


