

Exploring Vector Search at Scale

Stephen Batifol

Haystack EU 24

The Happy Beginnings

The Tech Stack in Q4 2024

Unstructured Data? No Problem!

• Docker + Vector DB

• Use some Embedding Model

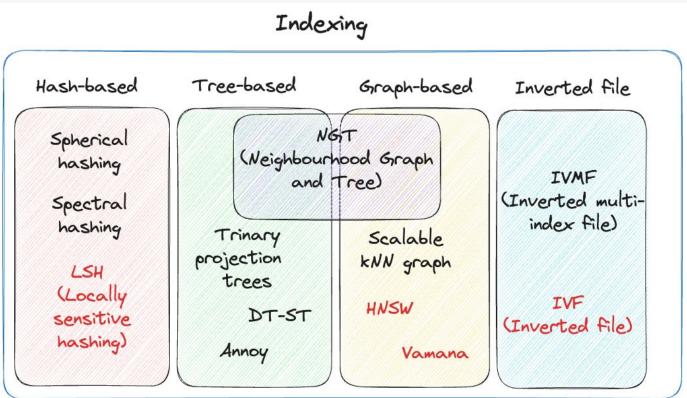
• Store your Vectors in your DB, you're happy! :D

The Growing Pains

You have more and more data!

Maybe even some multimodal data 🎩

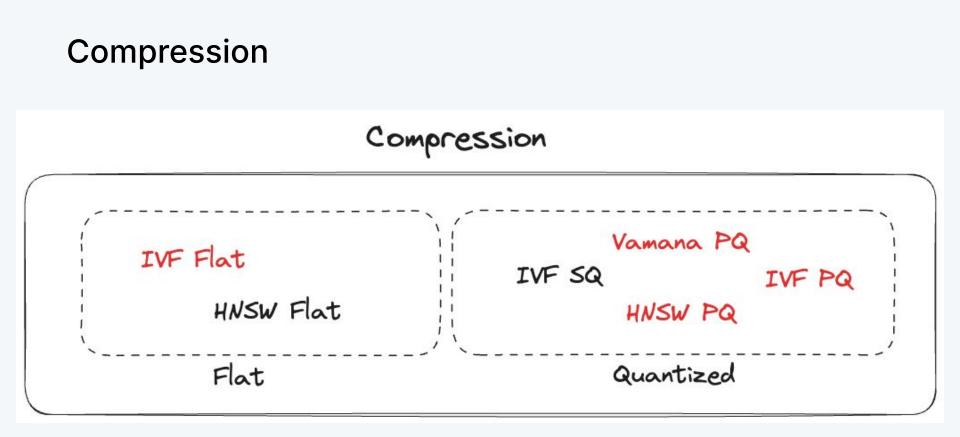
- Search Quality is declining
- Index updates take forever
- Your frustration rises!



LET THE GAME BEGIN

¥

Index Types Overview



Balancing Speed & Accuracy

The Journey Continues

The Distributed Dilemma

You've optimized your Index!

You've chosen the right data structure

You've dabbled in compression techniques!

More data \rightarrow One instance isn't enough anymore!

 \Rightarrow It's time to go **Distributed**!!

Sharding: Divide and Conquer

You brainstorm different sharding approaches:

- **Random sharding**: Simple, but might lead to uneven distribution.
- Hash-based sharding: More even distribution, but potentially tricky with updates.
- **Semantic sharding**: Grouping similar vectors together, which could speed up certain types of queries.

Partitioning!

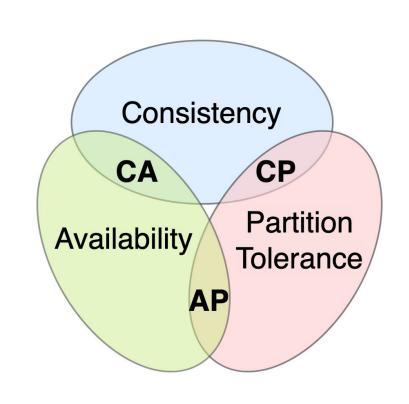
You sketch out a plan:

1. Incoming data gets routed to the appropriate language-specific partition.

2. Queries first determine the relevant language(s).

3. The search is executed only on the relevant partition.

This could reduce the search space for many queries, leading to faster results!


Scaling Horizontally: The Replica Game

- You decide to implement a replica system:
 - Each shard has multiple replicas.
 - Read requests are load-balanced across replicas.
 - Write operations are synchronized across all replicas of a shard.

This setup allows you to scale out your read capacity simply by adding more replicas.

Consistency vs Availability

What about Real-Time?!

Users want it now!

- Write Ahead Logs
- Two-tier Systems
- Incremental Indexing

And Monitoring?! Keeping the Beast in Check

You set up dashboards to track:

- Query latency across different shards and replicas
- Index update times
- Resource utilization (CPU, memory, disk I/O)
- Shard balance and data distribution

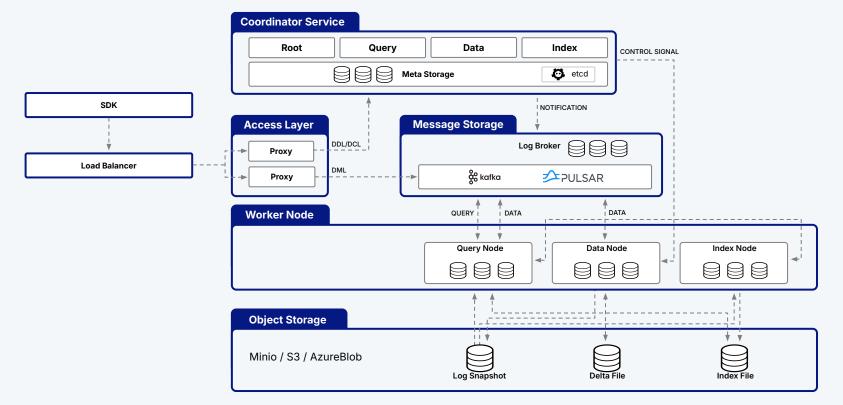
You also implement automated processes for:

- Rebalancing shards when they become uneven
- Adding or removing replicas based on load
- Performing rolling updates to minimize downtime

To Host or Not to Host?

As your system grows, you start weighing the pros and cons of cloud-hosted solutions versus managing your own infrastructure. You consider factors like:

- Scalability and elasticity
- Operational overhead
- Cost predictability
- Data privacy and compliance requirements


A Never Ending Journey

Congratulations, you just built Milvus!

Fully Distributed Architecture

Achieving Billion+ Scale vector Search with K8s

Milvus 🤝 Open-Source

MINIO

Store Vectors and Indexes Enables Milvus' stateless architecture

Kafka/ Pulsar

Handles **Data Insertion** stream Internal Component Communications **Real-time updates** to Milvus

Prometheus / Grafana

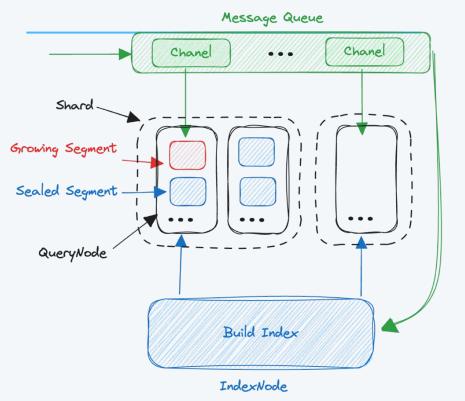
Collects **metrics** from Milvus Provides **real-time monitoring** dashboards Kubernetes Milvus Operator CRDs

Milvus Data Structures

Shard

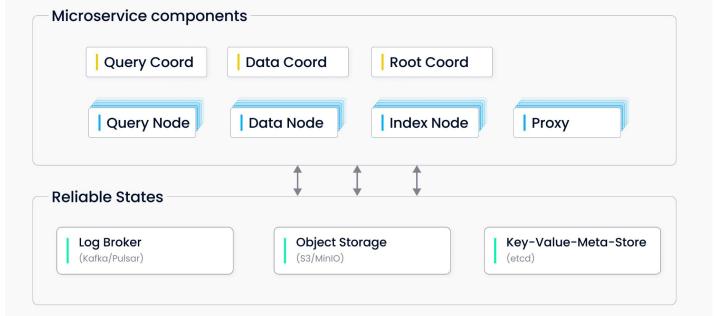
• Boost the ingestion rate

Segment

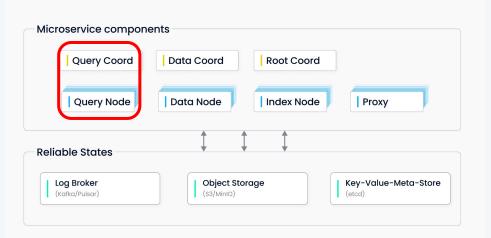

A single unit of Data in Milvus.
 Segment < Partition < Collection

Growing Segment

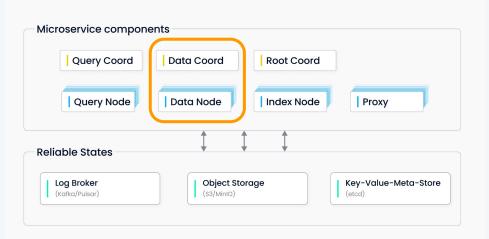
 Directly retrieves data from the message queue for rapid service. Utilizes a brute-force index and prioritizes data freshness.


Sealed Segment

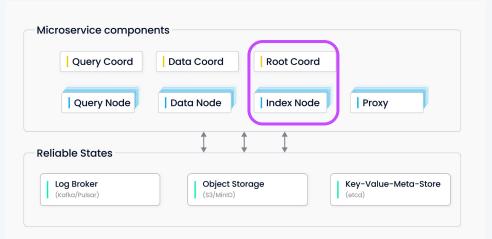
• An immutable segment uses **indexing** methods to guarantee **efficiency**.



Distributed Architecture

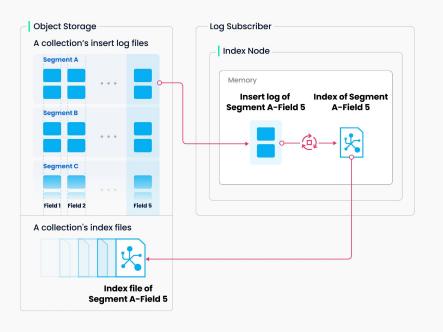

Query Node: Serving Search Requests

- Subscribe to the **log broker** for real-time querying
- Convert new data into **Growing Segments** temporary in-memory structures for the latest information.
- Access **Sealed Segments** from object storage for comprehensive searches.
- Perform **hybrid searches** combining vector and scalar data for accurate retrieval.



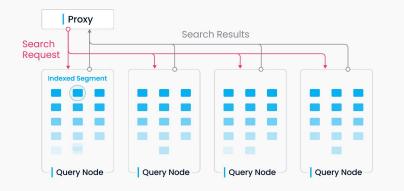
Data Node: Processing Data Updates

- Subscribe to the log broker for real-time updates.
- Process mutation requests for data changes or updates.
- Pack log data into log snapshots compressed bundles of updates.
- Store log snapshots in **object storage** for persistence and scalability


Index Node: Building Search Indexes

- Build indexes on the data to facilitate faster search operations.
- Can be implemented using a **serverless framework** for cost-efficiency and scalability.

Index Building



To **avoid frequent index building** for data updates.

A collection in Milvus is divided further into segments, each with its own index.

Scalable Search

- Distributed Search across
 shards
- Parallel Processing
- Query Optimization

a the second of the second

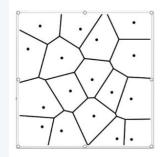
The Starson Proven

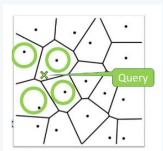
Nearest Neighbors

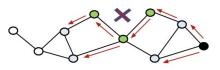
Brute-force

• Exhaustively search query vectors against index dataset

IVF-Flat


- Train clusters on Index dataset
- Partition Vectors by their closest clusters
- Search Smaller number closest lists.


IVF-PQ


- Train clusters on Index dataset
- Partition and compress vectors by their closest clusters
- Search smaller number of closest lists

CAGRA

- Build a graph from vector neighborhoods
- Reduce distances during search by traversing graph

CAGRA

GPU accelerated Graph-Based ANN from NVIDIA

- Similar to HNSW for CPU
- Individual queries parallelized during Search
- Higher throughput than usual GPU Graph ANNs and lower latency

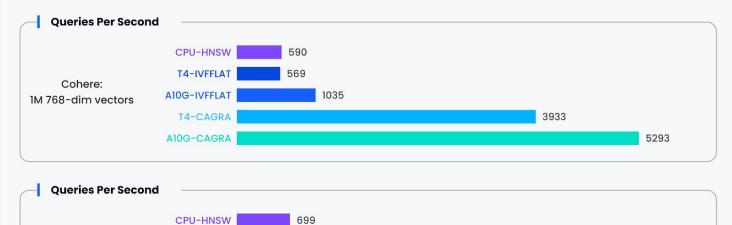
than CPU Graph ANNs.

Benchmarking setup

	Instance type	vCPU	Memory	GPU memory	Price(\$/h)	
Т4	g4dn.2xlarge	8	32G	16G	0.752	1.58x expensive
A10G	g5.2xlarge	8	32G	24G	1.212	2.55x expensive
CPU	m6id.2xlarge	8	32G	_	0.4746	

Small Batch Performance

T4-IVFFLAT


T4-CAGRA

A10G-IVFFLAT

A10G-CAGRA

Milvus-CAGRA vs Milvus GPU IVF vs Milvus-HNSW

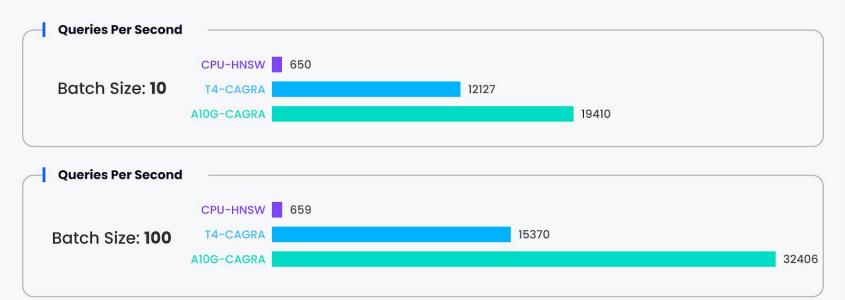
(Search Batch Size: 1)

629

1161

4503

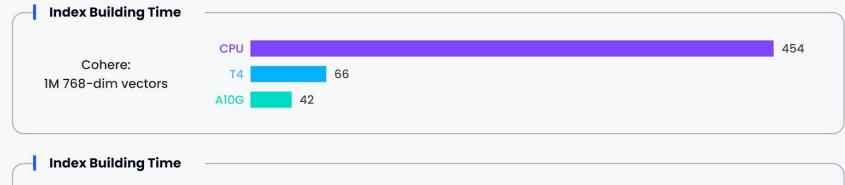
5767


OpenAl:

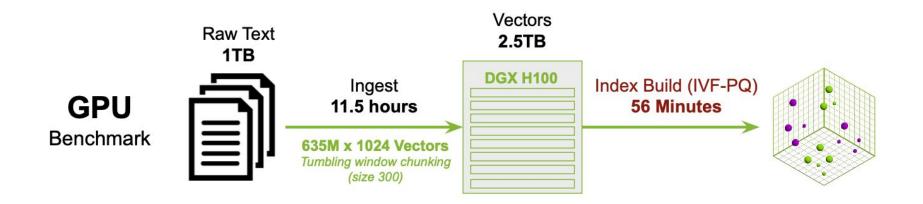
500K 1536-dim vectors

Large Batch Performance

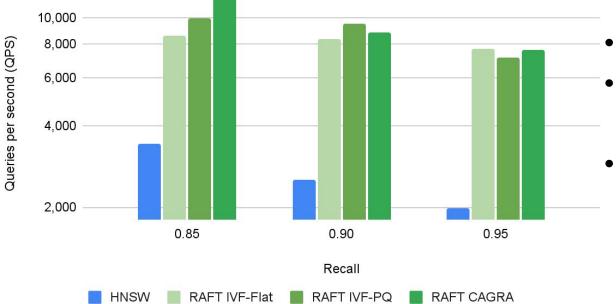
Milvus-CAGRA vs Milvus-HNSW


(Cohere: 1M 768-dim vectors)

Index Building (in seconds)


Milvus-CAGRA vs Milvus-HNSW

Scale Indexing on DGX H100 (8x H100)



CPU Estimate	GPU Index Build Time Number of GPUs	56 Min × 8	
	GPU / CPU Performance	× 20 🖌	—— linear speedup
	Minutes per day	÷ 1440 Min/Day	
	CPU Estimated Index Build	6.22 Days	

zilliz

Benchmarks (Batch size 1)

Throughput at batch size 1

DEEP-100M dataset

H100 GPU for RAFT

indexes

Intel Xeon Platinum

8480CL CPU for HNSW

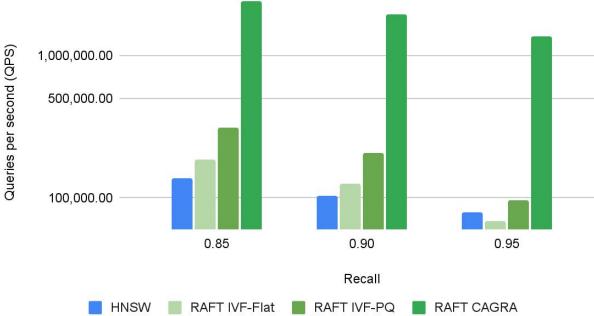
Benchmarks (Batch size 10)

100,000 50,000 10,000 5,000 0.85 0.90 0.95 Recall HNSW **RAFT IVF-Flat** RAFT IVF-PQ RAFT CAGRA

Throughput at batch size 10

- **DEEP-100M** dataset
- H100 GPU for RAFT

indexes


• Intel Xeon Platinum

8480CL CPU for HNSW

Benchmarks (Batch size 10K)

Throughput at batch size 10k

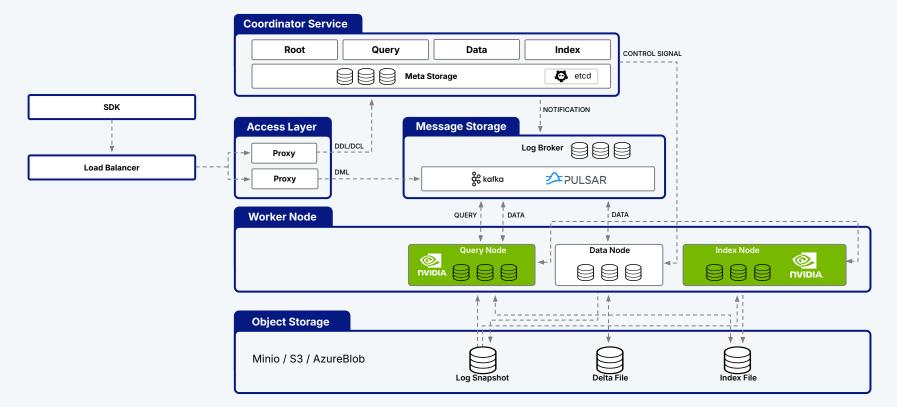
- **DEEP-100M** dataset
- H100 GPU for RAFT

indexes

- Intel Xeon Platinum •
 - 8480CL CPU for HNSW

Tips for more performance

Increase the number of Data Nodes ⇒ Improve
 Streaming ingestion performance


• Place Index and Query nodes on separate GPUs

 Increase max segment size can improve search latency and throughput

Fully Distributed Architecture

But at what Scale?

10B vectors

of 1536 dimensions in a single Milvus/Zilliz Cloud instance

100B vectors

in one of the largest deployment running on K8s.

Speaker

Stephen Batifol

Developer Advocate, Zilliz/ Milvus

stephen.batifol@zilliz.com
 linkedin.com/in/stephen-batifol/
 @stephenbtl

Thank you

github.com/milvus-io/

/in/stephen-batifol

amilvusio

Ready to scale 🚀

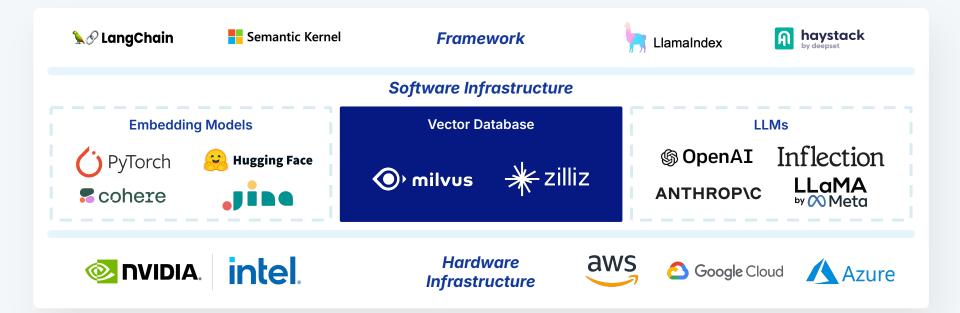
Write your code once, and run it everywhere, at scale!

• API and SDK are the same

Milvus Lite

- Ideal for prototyping, small scale experiments.
- Easy to set up and use, pip instally pymilvus
- Scale to ≈**1M** vectors

Milvus Standalone


- Single-Node Deployment
- Bundled in a **single Docker** Image
- Supports Primary/ Secondary
- Scale up to **100M** vectors

Milvus Distributed

- Run on **K8s**
- Load balancer and Multi-Node Management
- Scaling of each component independently
- Scale to **100B** vectors

Well-connected in LLM infrastructure to enable RAG use cases

Thank you

milvus.io

github.com/milvus-io/

/in/stephen-batifol

amilvusio

Icons

ICON STYLE:

Database Databases Data Lake DB Warehouse Data Center Cloud Cloud to Cloud to Cloud Hybrid Cloud Dev	Equal Cloud Cloud Management
() () () () () () () () () () () () () (
Server Payday Workday Docker Operator Kafka KSQL Rocket ksqlDB KSQL Circle Connector	Microservices Schema Registry
ᆘᅊᇔᄽᇄᅮᅮᄪᆂᅋᄰᇄ	Calendar cruce Documento
Streams Event Streams Central Nervous Early Production Stream Balance Rest Trophy Cluster Certificate System Streaming Designer	Calendar Stream Processing Cookbook
$\Box \Box \bigcirc \Box \blacksquare \begin{array}{} \begin{array}{} \begin{array}{} \begin{array}{} \end{array} \\ \end{array} \\ \end{array}{} \end{array}{} \begin{array}{} \end{array} \\ \end{array}{} \begin{array}{} \end{array} \end{array} \end{array} \\ \end{array}{} \begin{array}{} \end{array} \end{array} \end{array} \end{array} \begin{array}{} \end{array} \end{array} \end{array} \end{array} \begin{array}{} \end{array} \end{array} \end{array} \end{array} \end{array} $	Q +
Apps Service Apps Coming Soon Logs Data Stacks Stack Overflow Storage Platform Data In Data Out	Data Data Add Governance
$ \bigcirc \qquad \bigoplus \qquad$	Expand / Shrink Add

For the complete, most updated collection of Icons please go to: https://cnfl.io/Icons

51 | © Copyright 8/16/23 Zilliz

Current

Icons

ICON STYLE:

\oplus	∞	Ś	~	<u>,ıı</u>	ଙ୍	\mathfrak{D}	Ð	Ø		ſ	⊌
Globe	Infinity	Settings	Monitoring	Anomaly Detection	Analytics	Real-time Analytics	Real-time	Processing	Process Data	Upload	Download
\Box	돠	ත්	$\langle \cdot \rangle$	\bigcirc		<i></i>	٩	\Box	D	¢	¢
Computer	Devices	Computer / DB / Cloud	Speed	Time	Web Confirmed	RSS	ROI	Message	Quotes	Interview	# of Topics
උ	ති	2	ହ	≙	52	Å	പ	2	∇	Q	Q
Person	People	Webinar	Developer	Onboard	Offboard	People Manager	Career Enablement	Roadmap	Filter	Search	Solution
[-]	R	[ⁿ]	٩٩	R	Q				\square	?	${ { { { \odot } } } }$
Features	Company Policies	Docs	Invoice	Blog	Podcast	Video	Book	Table	Email	Question	Check
A	Q.,	\bigwedge		£	GDPR			\Box	රු	\bigcirc	\odot
Lock	Key	Warning	Ш Hacker	Bug	GDPR	CCPA	Shield	Shield Open	Machine Learning	Continuous Learning	Eye

Current

For the complete, most updated collection of Icons please go to: https://cnfl.io/Icons

Icons

ICON STYLE:

	• _	台	品		Ъ∕	\bigtriangledown	_•	2		(†¶	¢
# of Events Per Day	Venue	Government	Business	Marketplace	Ecommerce	Sale	Money	Telecom	Support	Gaming	Healthcare
$\langle \! \! \mathfrak{S} \! \! \rangle$	\heartsuit		₾	Ъ	Ľ	மீ	Ъ		む	رهم	Ø
Badge	Love	Partner	Hand	Arm	Benefit	Thumbs Up	Swipe	Select	Promote	Awareness	Target
B	ц	ዣ	$\underline{\wedge}$	لگ	53	ជ	4	公			
Car	Truck	Shirt	Food	Catalyst	Box	Puzzle	Lightening	Star	Sparkly New		

53 | © Copyright 8/16/23 Zilliz