
Praveen Mohan Prasad Hajer Bouafif

Analytics Specialist TAM
AWS

Unlock NextGen Product Search
with ML and LLM Innovations

Sr. WW Solutions Architect - OpenSearch
AWS

Search lifecycle

Results

Data load

Front
End

User signals
Search query

Data Retrieval

Results post-
Processing

Data Rendering

Data Preparation

Enrichment Re-writing

75+
Partners and growing

Multiple service providers
AWS, Oracle, Aiven – Azure and GCP, Bonsai-
Azure and GCP

100s of new features
32k+ pull requests merged
100+ weekly community contributions

>700MM
OpenSearch project downloads since
launch in Q3 2021

OpenSearch Growth

Top 4 search engine
DB-Engines ranking

Apache 2.0 License
Linux Foundation

Application

ML powered results

2

3

Ingest pipeline Search pipeline

Image

Text

1 Input image/text
Embedding model

Remote Inference (self-hosted, AI services)

ML Connector

Custom ML model LLM

pr
oc

es
so

rs

pr
oc

es
so

rs

User query

ML integrations made easy with OpenSearch

5

ML-Powered Search Lifecycle

Query
understanding

Results reranking

Search query

Query re-writing

Document
retrieval

Amazon Rekognition
or

Object detection models

Amazon Comprehend
or

NER models

{

"description": "Rugged Brown Leather Boots”,
“price”: “50
"color":"brown",
"category":"Apparel and Accessories",
"objects":"Footwear,Boot,Shoe,Clothing”

}

{
"Text": "Bob ordered two
sandwiches and three ice cream
cones today from a store in
Seattle.”
}

{

 {"Text": "Bob", "Type": "PERSON" },
 {"Text": "two sandwiches", "Type": "QUANTITY" },
 {"Text": "three ice cream cones", "Type": "QUANTITY" },
 {"Text": "today", "Type": "DATE" },
 {"Text": "Seattle", "Type": "LOCATION" }

}

Query understanding starts at ingestion time

Ingest pipeline: ML inference Processor

“Brown leather shoes for men
under 50$”

And applies at search time

Search QueryUser Query

“nearby” => “term”: {“location”: “Berlin”}

“Now” => “term”: {“time”: “now”}

Query re-writing using LLMs

O p e n S e a r c h q u e r y D S L

“Brown leather
shoes for men
under 50$”

S e a r c h Q u e r y S t r u c t u r e d Q u e r y

Rewrite

GitHub code sample

Cache to reduce the LLM cost and latency

Match Return Structured
Query

YesNo
LLM

Lexical/kNN Search

• Langchain built-in semantic cache with OpenSearch

kNN index

PUT index/_doc

Search latency
3 sec à 600 ms

User Query

• Warm up cache on regular intervals

• ISM for auto-deleting the cache (index) based on TTL

10

ML-Powered Search Lifecycle

Query
understanding

Results reranking

Search query

Query re-writing

Document
retrieval

KNN/ANNBM25

Retrieval Types

Multimodal search
Uses embedding
models that share
embedding space
between image and
text.

Lexical search
Uses keyword-based matching
using TF/IDF.

Sparse retrieval Dense retrieval

Neural sparse search
Uses amazon/neural-
sparse embedding models

BM25+KNN

Hybrid Search

Ensemble search

Uses both traditional keyword-search

combined with vector search

Vector search
Uses purpose build
models for text, image
or video embedding
models.

(BM25/KNN)+LLM

Conversational search

RAG

Uses LLM to augment the results
retrieved from Vector Search.

Neural sparse search

Sparse encoding model

Query:
“apple
headphones”

Document :
“Apple Products are
expensive”

OpenSearch
inverted Index

Ingest pipeline: Sparse Encoding processor

Neural sparse queryIngest

{
"apple":3.3
"head":2.28
"##phones":2.08
"sound":0.78
"music":0.73
"device":0.6
"nike":0.5
"wireless":0.49
"phone":0.4
"loud":0.39
.
.
.
"hardware":0.05
"version":0.04
}

Retrieve with
tokens >= 0.5

Re-rank with
all tokens

Search pipeline: Sparse two phase processor

{
"apple":3.32
"expensive":2.49
"cheap":1.87
"products":1.85
"cost":1.57
"product":1.49
"technology":1.32
"mac":0.59
.
.
"fruit":0.02
"foods":0.01
}

Improved sparse search performance maintaining relevance

1. opensearch-neural-sparse-encoding-v2-distill

2. opensearch-neural-sparse-encoding-doc-v2-distill

3. opensearch-neural-sparse-encoding-v2-mini

https://huggingface.co/opensearch-project

OpenSearch Sparse models v2 Performance @ CPU VS Sparse models v1

Ingestion ThroughPut 1.74x – 4.18x

Search Latency 30%

BIER: ndcg@10 ~=

https://opensearch.org/blog/neural-sparse-v2-models

https://huggingface.co/opensearch-project
https://opensearch.org/blog/neural-sparse-v2-models

Dense search

Crafted with premium materials, these
versatile black sneakers feature a sleek,

minimalist look to complement any
outfit while providing lasting comfort
for urban exploration and adventures.

OpenSearch knn Index Query: Styling Kicks

Dense Embedding model

Ingest pipeline: Text/Text-image embedding processor

Neural queryIngest

Model fine-tuning with synthetic data

"query": { "hybrid": {
"queries": [{
 “match”:{
 <text query>
 }
},
 {
 “neural”:{
 <vector query>
 }
}]

Hybrid search

15

Normalize score

Normalize Score

doc_#

doc_#

doc_#

doc_#

Combine scores Re-rank
documents

BM25
scoring

K-NN
scoring

Search pipeline: Normalization processor

X*BM25 + Y*Cosine_score

Conversational search

Response

LLMMemory Index

Embedding

Search pipeline: RAG processor

kNN Index Docs

Prompt Eng

1 2 3

4 5 6

question

17

ML-Powered Search Lifecycle

Query
understanding

Results reranking

Search query

Query re-writing

Document
retrieval

Reranking with cross-encoder models

Search pipeline: Rerank processor

doc_#

doc_#

doc_#

doc_#

{
 "query": {
 "match": {
 "text_representation": ””…
 }
 },
 "ext": {
 "rerank": {
 "query_context": {
 "query_text": "Where is Albuquerque?"
 }
 }
 }
}

Cross-encoder model

Get the new
scores

Retrieve
documents

Re-rank
documents

Judgements

LLM as Evaluator

Human annotated
golden set

Fine-tune

ubi_queries

ubi_events

User Behavior insights to improve your search and ranking

Implicit Signals

Explicit Feedback

Embedded JS
client in your app

LTR model

Amazon Personalize
re-scored search

results

Online rankingOffline training and Evaluation

OpenSearch Re-ranking plugins

LTB model

Weighted
Queries

Online Search

Dynamic retrieval selection

Train

X(Lexical Search)+Y(Vector Search)

Demo

20

Thank you!
Hajer Bouafif Praveen Mohan

linkedin.com/in/praveen-mohanprasadlinkedin.com/in/hajerbouafif

