
Navigating Neural Search:
Avoiding Common Pitfalls

Jo Kristian Bergum @jobergum

Vespa.ai

An open-source platform for
low latency computations
over large, evolving data

Apache 2.0 Licensed
https://github.com/vespa-engine/vespa

➔ Search, filter and rank structured and
unstructured data

➔ Dense and sparse representations

➔ Scalable in any dimension

➔ Multiphase retrieval & ranking

◆ Dense HNSW - nearest neighbor search

◆ Sparse WAND

◆ Hybrid combinations

➔ Tensors and ML are first class citizens

➔ Real-time Indexing and true partial updates

➔ Elastic content scalability (no pre-sharding)

@vespaengine

This talk

- Highlight common pitfalls
- Pre-trained Language Models (PLM)
- Quick overview of neural search using PLM

- Three neural models built on pretrained language models (PLM)
- Text embedding models and embedding retrieval

Not in this talk

- Retrieval Augmented Generation (RAG)
- Generative Large Language Models (GPT, LLAMA)

Pretrained Language Models (PLM)

- Attention is All you Need (Google 2017)
- BERT (Bidirectional Encoder Representations from Transformers)
- Trained using masked word language objective

 The cat sits on the [MASK] looking at the [MASK]
- Masking objective is genius - Enables self-supervision with large corpuses of

text
- Pre-trained model weights uses as starting weights for downstream tasks

- Search
- Classification
- And more

Transfer Learning 101

Language Model

A tokenizer + fixed
vocabulary

A deep neural network
architecture

Small, medium, large, xxx
large?

LM Tokenization
Happy Path Tokenization

10 words maps to 10 token ids

Dog

LM
tokenization

- Different
tokenizer
implementations

- Tied to model
- Fixed vocabulary

size
- Learned “word”

embedding
vectors per word
in vocab

- Vocab fixed
before
pre-training of
neural network
weights

LM Tokenization
Are LM insensitive to spelling mistakes?

LLM tokenization impact vector
representation

annoyance => annoyance

anoyance => ['an', '##oya', '##nce']

annyoance => ['ann', '##yo', '##ance']

Variant and tokens

frustration, anger, rage (0.91)

loyalty, consciousness, treasure (0.83)

anniversary, old age, tendency (0.84)

Top-3 retrieved words (vector search over WordNet)

WordNet® is a large lexical database of English. Nouns, verbs,
adjectives and adverbs are grouped into sets of cognitive synonyms
(synsets), each expressing a distinct concept.

http://localhost:8080/search/?yql=select%20word,meta%20from%20doc%20where%20%7BtargetHits:10%7DnearestNeighbor(embedding,e)&input.query(e)=embed(annoyance)&collapsefield=word
http://localhost:8080/search/?yql=select%20word,meta%20from%20doc%20where%20%7BtargetHits:10%7DnearestNeighbor(embedding,e)&input.query(e)=embed(anoyance)&collapsefield=word
http://localhost:8080/search/?yql=select%20word,meta%20from%20doc%20where%20%7BtargetHits:10%7DnearestNeighbor(embedding,e)&input.query(e)=embed(annyoance)&collapsefield=word

LM tokenization
Linguistics and language matters !(?)

- Multilingual
- English

Not that many language specific LM
models (except for English)

Don’t know newer words

- 2023 (202, ##3)
- Covid-19 (co,##vid,-, 19)
- GPT (gp, ##t)

Applying LMs to search

Searching over data with sublinear complexity

Conceptual representational model for retrieval

● Representation of queries and
documents

○ So that relevant documents
for a query is scored higher
than irrelevant documents

● Dense/Sparse/Mixed
● Score(Q,D) complexity

constraints
● Supervised (learned) versus

unsupervised

Motivation for representational approach

Avoid scoring all documents D in collection for a query Q

Docs

Query

for_each Score(Q,D) Ranked
docs Sort

Motivation for representational approach

Avoid scoring all documents D in collection for a query Q

Docs

Query

Index
docs

Score(Q,D) Ranked
docs Sort

“Index”

Make it more concrete

Logical representation versus physical implementation.

Accelerating scoring over sparse representations

- Build Inverted Index data structures
- Search accelerated with algorithms like WAND, MaxScore, BM-WAND++

Accelerating scoring over dense representations

- Build Vector Index (IVF, Quantization, HNSW, ++)
- Search accelerated with algorithms tied to vector index structure

Also: Phased retrieval and ranking

 Effective candidate retrievers
Accelerated (limited choice of scoring function)

First phase ranking

Second phase
ranking

global-phase
ranking

Billions

Millions

Thousands

100s

3 Neural Methods for Search using LM

All methods require - Labeled examples - usually triplets

<query, relevant document, irrelevant document>

Pre-trained
Model Train

Examples

Fine-tuned
Model

Cross-Encoder
Encodes both query and document at
the same time (cross)

all-to-all attention between all tokens in
query and document

Most effective on IR benchmarks
(nDCG)

High compute complexity (n^2)

No efficient way to “index”

Bi-Encoder
Encode queries and documents
independently

No token level attention between query
and document (no cross)

Enables indexing documents offline

Sim(Q,D):

- Dot product (sparse or dense)
- Cosine/Euclidean/Hamming/Ma

ny

Bi-Encoder

Output Pooling

From a token vector
representations to a vector
representation of a
sequence

- Average?
- 101/CLS token?

Bi-Encoder adv

Learn token vectors
instead of sequence
vectors

Not pooled

Learned representations - No better than the examples?

Remember: The representation of queries and documents are learned

- Your data might not look like the examples

Data the vector model was trained on

Photo by Vidar Nordli-Mathisen on
Unsplash

https://unsplash.com/es/@vidarnm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/road?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/road?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by Oskar Kadaksoo on Unsplash

Your data

https://unsplash.com/@oskark?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cockpit-landing?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

TLDR; Neural
Methods for
Retrieval & Ranking

Accuracy versus cost

Model not better than the
examples it was trained on

Explain/score interpretability
difficult with pooled
representations

Introducing Neural Bag of
Whole-Words with ColBERTer

https://arxiv.org/abs/2203.13088

Off-the-shelf text-embedding models

- Size of model
- Embedding dimensionality
- Sequence length
- Quality/Accuracy (for your use

case)
- Language capabilities
- Licence/Commercial use

MTEB (massive
text embedding
benchmark)

Great guide

Many different tasks

https://huggingface.co/spaces/mt

eb/leaderboard

Benchmark hacks?

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

Embedding Retrieval

Embedding inference + Retrieval

Model size (GPU needed?)

Sequence length scaling

Dimensionality

1536 dims (4x cost of 384)

Not 4x accuracy !

Vector Search

Brute Force Search Might Be All You
Need?

Assume 64GB/s memory bandwidth

1M vectors with1536 dimensions using
float is approx 6GB

Quiz: How many QPS can one node
support at max?

The A in ANN

Approximate search instead of brute-force search

Speed up retrieval, by building an index, sounds familiar?

Many different ANN algorithms and associated tradeoffs

- Query speedup
- Quality (What is the error introduced by approximate search)
- Real-time (Mutatable, grow from to zero to N)
- Resource footprint, index build time

Exact and
Approximate
(recall@k)

Overlap@k is a better
name for us working
with search metrics

Impact of ANN choice & parameters on search quality

Our search quality metrics

- Recall (Are we finding all the relevant hits)
- Precision (Are we finding nothing but relevant?)

LADR

https://arxiv.org/abs/2307.16779, BM25 on DL19 is about 0.55 NDCG@10

https://arxiv.org/abs/2307.16779

TLDR;

- Tokenization and vocabulary
matters

- Language matters
- Representations,

representations,
representations

- Your data (queries and
documents) might not match
training examples

- Embedding inference
- Sequence length
- Dimensionality

- Embedding retrieval (vector
search)

- Brute force versus approximate

- Approximate Search Does
Introduce Errors..

Resources

Lots on Blog.vespa.ai, for example

https://blog.vespa.ai/improving-zero-shot-ranking-with-vespa-part-two/

https://blog.vespa.ai/accelerating-transformer-based-embedding-retrieval-with
-vespa/

https://blog.vespa.ai/improving-zero-shot-ranking-with-vespa-part-two/
https://blog.vespa.ai/accelerating-transformer-based-embedding-retrieval-with-vespa/
https://blog.vespa.ai/accelerating-transformer-based-embedding-retrieval-with-vespa/

Hated it? Tweet me

Jo Kristian Bergum jobergum

