
Strategies for using alternative queries
to mitigate zero results and their

application to online marketplaces
Jean Silva (Wallapop)

René Kriegler (OpenSource Connections)
Haystack EU 2023

About us

René Kriegler

Worked in search for 16 years

Focus on e-commerce search, worked with some of Germany’s
top 10 online retailers

Co-Founder/-Organiser of MICES - Mix-Camp Ecommerce
Search (https://mices.co)

Maintainer of Querqy library, co-initiator of Chorus project

Director E-commerce at OpenSource Connections

About us

Jean Silva

Search Engineer @Wallapop.

Working with various programming languages since 2008 and fall
in love with the search world in 2014.

Jean has worked in different industries such as travel,
e-commerce, and classified listings.

About us

Wallapop is the leading platform in conscious and
human consumption, that aspires to create a unique

inventory ecosystem of reused products.
We are present in Spain, Italy and Portugal.

+17M users in the South of Europe
+640M articles have found a new home in the past 10

years.

About us

Wallapop is the leading platform in conscious and
human consumption, that aspires to create a unique

inventory ecosystem of reused products.
We are present in Spain, Italy and Portugal.

+17M users in the South of Europe
+640M articles have found a new home in the past 10

years.

Search Engineers
Principal Search Engineer

Data Scientists & Data Analytics

Product Manager
Frontend Engineers

Engineering Manager

The Team

- Wallapop business domain - classified ads.
- Large amount of user-generated content, covering goods from many

domains.
- Very diverse queries, locality filter, item conditions, and more.
- Focus on precision.
- Wanted to make solving/mitigating zero results a priority.

The problem

How can we improve on zero results?

Better text analysis (e.g. better stemmer, tokenization)

Apply synonyms and hyponyms (laptop = notebook; shoes => trainers)

Spelling correction (Did you mean ...? / We’ve searched for ...)

Content (e.g., also search in low-quality data fields)

Loosen boolean constraints (AND => OR, mm<100%)

Apply hypernyms (boots => shoes)

Query relaxation (iphone 13 => iphone)

Use more distant semantic relation (beard balm => trimmer)

Show more general recommendations (related to user’s shopping history, popular

items)
7

How can we improve on zero results?

Better text analysis (e.g. better stemmer, tokenization)

Apply synonyms and hyponyms (laptop = notebook; shoes => trainers)

Spelling correction (Did you mean ...? / We’ve searched for ...)

Content (e.g., also search in low-quality data fields)

Loosen boolean constraints (AND => OR, mm<100%)

Apply hypernyms (boots => shoes)

Query relaxation (iphone 13 => iphone)

Use more distant semantic relation (beard balm => trimmer)

Show more general recommendations (related to user’s shopping history, popular

items)
8

Solve by using vector search?

Vector search looks promising for Wallapop but…

- Needs at least medium-term development.
- Lots of documents, most of them not staying on the platform for long - adding

embeddings can be challenging and costly.

=> Start by using simpler approaches to mitigate zero results & come back later!

If not vector search (yet) - which other strategy?

Better text analysis - contributed new Spanish stemmer to Lucene

Apply synonyms and hyponyms

Spelling correction

Content - increase geo distance

Loosen boolean constraints

Apply hypernyms

Query relaxation

Use more distant semantic relation

Show more general recommendations

10

✓

✓

✓

✓

✓

If not vector search (yet) - which other strategy?

Better text analysis - contributed new Spanish stemmer to Lucene

Apply synonyms and hyponyms

Spelling correction

Content - increase geo distance

Loosen boolean constraints

Apply hypernyms

Query relaxation (iphone 13 => iphone) & maybe token replacement (audi a1 => audi

a2)

Use more distant semantic relation

Show more general recommendations
11

✓

✓

✓

✓

It’s four years since the 2019 talk on query
relaxation - can we find better solutions? What
are the opportunities from LLMs?

✓

Alternative queries - query relaxation: intuition

Intuition:

Dropping one query term makes the query less specific but it still relates to the original
query.

Produces an alternative query - interesting to the user but not necessarily matching the
original intent

Query relaxation: UX
iphone 14 mini

Showing result for: iphone 14 mini

iphone mini

🔍

🔍

Explainable!

Interactive!

iphone 13 mini 🔍

Query relaxation: key problem

Which query term shall we drop?

iphone 14 iphone 14 iphone 14

audi a4 audi a4 audi a4

purple shoes purple shoes purple shoes

black shoes black shoes black shoes

usb charger 12v usb charger 12v usb charger 12v usb charger 12v

Query relaxation: data sets and offline evaluation

We need data for offline evaluation (and
maybe for training)

Foundation: pairs of long and short
queries, where the short query is a
subquery of the long one

Query relaxation: data sets and offline evaluation

Evaluation metrics then test whether our algorithm dropped the term at the right
position in the query (accuracy) or whether the algorithm could make a
prediction for a given query at all and whether it’s correct (recall, precision).

Query relaxation: strategies
Strategies from Haystack US 2019 revisited

Query relaxation: strategies
Strategies from 2019 revisited

Obvious intuition but low coverage

iphone 15 => iphone 15

Query relaxation: strategies
Strategies from 2019 revisited

Good quality, easy implementation
Preferred solution if team can’t ramp up M/L
easily

Query relaxation: strategies
Strategies from 2019 revisited

Represent original query and relaxed query
candidates by a vector embedding. Keep the
candidate that is most similar to the original query
(cosine).

Word embeddings: sum over word vectors
Query embeddings: train based on user sessions

Strategies: Query similarity based on sequence embeddings

iphone 15
iphone 15
iphone 15

[iphone 15]

[iphone][15]

LLM (minilm)
embeddings

Query relaxation: strategies
It’s 2023 and LLMs have become available!

Represent original query and relaxed query
candidates by a vector embedding. Keep the
candidate that is most similar to the original query
(cosine).

Query embeddings based on minilm

Advantage: we don’t rely on embeddings for
previously seen queries

Keep most similar query (minilm
query embedding)

0.60 0.60 0.60

Heads-up: this is a different dataset!

Query relaxation: strategies
Can we beat the winner from 2019?

Replicate the winner strategy from 2019 to the
new dataset for comparison.

Multi-layer neural network with word embeddings
and wordshape features as input and index of
term to drop as output

Keep most similar query (minilm
query embedding)

0.60 0.60 0.60

MNN / Word2vec plus wordshape

24

...
301: 4.00
302: 0.00
303: 1.00

...
301: 5.00
302: 0.00
303: 0.00

...
301: 2.00
302: 2.00
303: 0.00

...
301: 0.00
302: 0.00
303: 0.00

...
301: 0.00
302: 0.00
303: 0.00

...
301: 0.00
302: 0.00
303: 0.00

...
301: 0.00
302: 0.00
303: 0.00

...
301: 0.00
302: 0.00
303: 0.00

nike boots 11

0: 0 0: 1 0: 0 0: 0 0: 0 0: 0 0: 0 0: 0

2 hidden layers

Input

Output

(Dimensions 1-300 are word embeddings)

Query relaxation: strategies
Can we beat the winner from 2019?

Replicate the winner strategy from 2019 to the
new dataset for comparison.

Multi-layer neural network with word embeddings
and wordshape features as input and index of
term to drop as output

+ Fixed: not ignoring query token order!

Keep most similar query (minilm
query embedding)
MNN, W2V & wordshape as input

0.60 0.60 0.60

0.98 0.98 0.98

Fine-tuned LLM to predict term to drop

26

nike boots 11

0: 0 0: 1 0: 0 0: 0 0: 0 0: 0 0: 0 0: 0

Fine-tuned
xlm-roberta-base-squad2-distilled

Input

Output

(Tokenized, token IDs)

Query relaxation: strategies
Can we beat the winner from 2019?

Fine-tuned LLM to predict the term to drop

On par with winner from 2019!
- Only single model to fine-tune vs. training

word embeddings and neural network
- We’ll never have to deal with missing

embeddings
- 0.98 means: we can only improve quality by

changing the datasets that we train on

Keep most similar query (minilm
query embedding)
MNN, W2V & wordshape as input

Fine-tuned LLM

0.60 0.60 0.60

0.98 0.98 0.98

0.98 0.98 0.98

Alternative Queries: token replacement

UX: keep users engaged by providing them with alternative queries that relate to
their original intent

Queries with narrow focus can be more interesting to interact with

audi a1 => audi a2 vs audi a1 => audi a1

Token replacement: Known strategies

audi a3 (orig.)
audi a4

paper a4

[audi a3]

[audi a4][paper a4]

Vector
embeddings

modelVector similarity between current
query and known queries
String similarity (added or alone)

=> limited to known queries
=> try out generative model

Fill-mask model generates tokens to replace a masking token ([MASK]):

This is a new [MASK]
[MASK] is a great singer.

Experiment: fine-tune distilbert-base-uncased for mask-filling using ca. 400k queries
that do have results

Token replacement: Fine-tuned fill-mask LLM

1) Find term to drop via query relaxation
2) Generate candidate terms to fill the gap
3) Apply some string similarity metrics

between dropped and generated token,
combine similarity with score from
mask-filling

Token replacement: Fine-tuned fill-mask LLM

audi a1 => audi [MASK]
audi [MASK] =>
audi [MASK] => audi a2

Seems to work best for replacing model numbers

Many 0-result queries will be modified into the same target query

Maybe start with query relaxation and use alternative query for
boosting?
(audi a1 => audi OR (audi AND a2)

Evaluation dataset could be based on per-session query
modifications

Business success of queries could be modelled into the approach
more easily than in query relaxation

Token replacement: Fine-tuned fill-mask LLM

What we put into practice at

Query Relaxation: Strategies

● Strategy:
○ Drop the least frequent term from the search query (step by step soon).

● Reason:
○ Speed is important. We need to operate at scale and complex machine learning models in

production needs more time to implement and maintain properly.
○ Iterative approach. We will come back for the other advanced techniques later, but we need

to start from somewhere.
● Limitations:

○ Document frequency is not an "always correct" approach to select tokens.
○ The least frequent terms in a query can sometimes carry important semantic meaning.

Query Relaxation: Dataset and offline evaluation

We need data for offline evaluation (and
maybe for training)

Foundation: pairs of long and short
queries, where the short query is a
subquery of the long one

Found in
query logs

Found in
query logs

Should have
results

Query Relaxation: Dataset generation

Approach to generate a dataset of "relaxed query" given a "long query" that
returned no results:

● Collect you data:
○ Historical search queries that had more than 1 token and returned results.
○ Historical search queries that returned no results.

Query Relaxation: Dataset generation

● Generate your labeled dataset based on historical data.
○ Clean your input data: Lower case, remove/keep (un)wanted characters, etc…
○ Generate all combinations from the "long queries" with a missing token (These are your

relaxed query candidates).
○ Find the relaxed query candidates in the historical searches that returned results (track the

number of times they were searched as well).
● Eg.:

○ Long query: "iphone 14 plus".
○ Relaxed query candidates: [iphone 14, iphone plus, 14 plus]

■ Number of times the relaxed query was previously seen:
● iphone 14: 150 times.
● iphone plus: 1 time.
● 14 plus: not found.

Query Relaxation: Dataset generation

● Save the dataset (as TSV):

(but you must have more, way more)

Query Relaxation: Retrieve the Document Frequencies

● Get the document frequency of each individual token from your index.
● Save this dictionary as JSON (so we can use it as a cache later)

Query Relaxation: Dataset evaluation

● Generate relaxed query candidates based on the DF of the tokens.
○ Load the labeled dataset we generated earlier.
○ For each row, split the "long query" by space and for each token in the list, retrieves the

document frequency.
○ Drop the term with the lowest DF (or a stop word, depending on your algorithm).
○ Add a column to the dataset called 'pred' with the 0-based position of the token to be dropped

Check the accuracy of your model: how many times does the label == pred?

Query Relaxation: Dataset generation

● Generate relaxed query candidates based on the DF of the tokens.
○ Load the labeled dataset we generated earlier.
○ For each row, split the "long query" by space and for each token in the list, retrieves the

document frequency.
○ Drop the term with the lowest DF (or a stop word, depending on your algorithm).
○ Add a column to the dataset called 'pred' with the 0-based position of the token to be dropped

Check the accuracy of your model: how many times does the label == pred?

We've got ~80% accuracy.

Conclusion & Outlook

Alternative queries:

- Can be formed by query relaxation or token replacement
- Have a good explainability
- Query relaxation:

- Quality mainly depends on what we tell the model in the training data
- LLMs can be fine-tuned to predict the term to be dropped - overcoming limitation of unknown tokens in word embeddings

- Alternative queries:
- Harder to test
- We need to understand the potential better from the user perspective
- AI opens the door for creativity in solving UX

Putting solutions into practice

- Ease of implementation and of putting solution into production beats accuracy for now - the simple solutions
allows us to get user feedback quickly

- A/B test to be put into production - we’ll iterate on the implementation

