Strategies for using alternative queries
to mitigate zero results and their

application to online marketplaces

Jean Silva (Wallapop)
René Kriegler (OpenSource Connections)

Haystack EU 2023

kel AYSTACK

ke AYSTACK
About us

René Kriegler

Worked in search for 16 years

Focus on e-commerce search, worked with some of Germany’s
top 10 online retailers

Co-Founder/-Organiser of MICES - Mix-Camp Ecommerce
Search (https://mices.co)

Maintainer of Querqy library, co-initiator of Chorus project

@ QpenSource Director E-commerce at OpenSource Connections
onnections

ke AYSTACK

Jean Silva

Search Engineer @Wallapop.

Working with various programming languages since 2008 and fall
in love with the search world in 2014.

Jean has worked in different industries such as travel,
e-commerce, and classified listings.

About us

0 wallapop

Wallapop is the leading platform in conscious and
human consumption, that aspires to create a unique
inventory ecosystem of reused products.

We are present in Spain, ltaly and Portugal.
+17M users in the South of Europe
+640M articles have found a new home in the past 10
years.

HAYSTACK

ke AYSTACK

@ wallapop

Wallapop is the leading platform in conscious and
human consumption, that aspires to create a unique
inventory ecosystem of reused products.

We are present in Spain, ltaly and Portugal.
+17M users in the South of Europe
+640M articles have found a new home in the past 10
years.

About us

The Team

Search Engineers Product Manager
Principal Search Engineer Frontend Engineers
Data Scientists & Data Analytics Engineering Manager

ke AYSTACK
The problem

- Wallapop business domain - classified ads.

- Large amount of user-generated content, covering goods from many
domains.

- Very diverse queries, locality filter, item conditions, and more.

- Focus on precision.

- Wanted to make solving/mitigating zero results a priority.

ke AYSTACK

How can we improve on zero results?

Better text analysis (e.g. better stemmer, tokenization)

Apply synonyms and hyponyms (laptop = notebook; shoes => trainers)

Spelling correction (Did you mean ...? / We’ve searched for ...)

Content (e.g., also search in low-quality data fields)

Loosen boolean constraints (AND => OR, mm<100%)

Apply hypernyms (boots => shoes)

Query relaxation (iphone 13 => jphone)

Use more distant semantic relation (beard balm => trimmer)

Show more general recommendations (related to user’s shopping history, popular

items)

ke AYSTACK

How can we improve on zero results?

Better text analysis (e.g. better stemmer, tokenization)

Apply synonyms and hyponyms (laptop = notebook; shoes => trainers)

Spelling correction (Did you mean ...? / We’ve searched for ...)

Content (e.g., also search in low-quality data fields)

Loosen boolean constraints (AND => OR, mm<100%)

Apply hypernyms (boots => shoes) Solve by using vector search?
Query relaxation (iphone 13 => jphone)

Use more distant semantic relation (beard balm => trimmer)

Show more general recommendations (related to user’s shopping history, popular

items)

T AYSTACK
Vector search looks promising for Wallapop but...

- Needs at least medium-term development.
- Lots of documents, most of them not staying on the platform for long - adding
embeddings can be challenging and costly.

=> Start by using simpler approaches to mitigate zero results & come back later!

ke AYSTACK

If not vector search (yet) - which other strategy?

Better text analysis - contributed new Spanish stemmer to Lucene
Apply synonyms and hyponyms

Spelling correction

Content - increase geo distance

Loosen boolean constraints

AN NN Y

Apply hypernyms
Query relaxation
Use more distant semantic relation

Show more general recommendations

10

ke AYSTACK

If not vector search (yet) - which other strategy?

Better text analysis - contributed new Spanish stemmer to Lucene
Apply synonyms and hyponyms
Spelling correction

Content - increase geo distance

AN NN Y

Loosen boolean constraints
Apply hypernyms
Query relaxation,(iphone 13 => iphone) & maybe token replacement (audi a1 => audi

a2) \ /

Use more distant semantic relation

It's four years since the 2019 talk on query

Show more general recommendations relaxation - can we find better solutions? What
are the opportunities from LLMs? 1

T AYSTACK
Alternative queries - query relaxation: intuition

Intuition:
Dropping one query term makes the query less specific but it still relates to the original
query.

Produces an alternative query - interesting to the user but not necessarily matching the
original intent

Showing result for:

Interactive!

iphone 44 mini

HAYSTACK

kel AYSTACK

Query relaxation: key problem

Which query term shall we drop?

iphone 14 iphone 44 tphene 14

audi a4 audi a4 adeht a4

purple shoes purple shees purpte shoes

black shoes black shees blaek shoes

usb charger 12v asb charger 12v usb eharger 12v usb charger 42v

kel AYSTACK

Query relaxation: data sets and offline evaluation

We need data for offline evaluation (and "long query" "short query"
maybe for training) pisos alquiler pisos
Foundation: pairs of long and short coches baratos coches
queries, where the short query is a audi a4 avant audi a4

subquery of the long one apple watch watch

kel AYSTACK

Query relaxation: data sets and offline evaluation

drop at idx
"long query"” “"short query” label predicted
pisos alquiler pisOs 1 1
coches baratos coches 1 1
audi a4 avant audi a4 2 2
apple watch watch 0 1

Evaluation metrics then test whether our algorithm dropped the term at the right
position in the query (accuracy) or whether the algorithm could make a
prediction for a given query at all and whether it's correct (recall, precision).

0 OpenSource
9 Connections

S aHAYSTACK
Query relaxation: strategies

Strategies from Haystack US 2019 revisited

Judgment Type Best previously seen relaxed query Any previously seen relaxed query

Data set FREQ CcoocC FREQ COoO0C

Metric P R F1 P R F1 P R F1 P R F1
0 - Drop random term 0.46 0.46 0.46 0.46 0.46 0.46 0.61 0.61 0.61 0.47 0.47 0.47
1 - Drop shortest term 0.38 0.38 0.38 0.48 0.48 0.48 0.54 0.54 0.54 0.49 0.49 0.49
2 - Drop shortest non-alphabetical term 0.52 0.05 0.09 0.45 0.04 0.08 0.55 0.05 0.09 0.46 0.04 0.08
3 - use 2, fallback to 1 0.40 0.40 0.40 0.49 0.49 0.49 0.56 0.56 0.56 0.50 0.50 0.50
4 - Drop most frequent term 0.25 0.17 0.20 0.44 0.35 0.39 0.56 0.38 0.45 0.45 0.36 0.40
5 - Drop least frequent term 0.79 0.79 0.79 0.60 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop term with highest entropy 0.29 0.27 0.28 0.43 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43
7 - Drop term with lowest entropy 0.32 0.32 0.32 0.29 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
8 - keep most similar query (Word2vec) 0.82 0.81 0.82 0.61 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62
9 - keep most similar query (‘Query2vec') 0.66 0.07 0.13 0.64 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - MNN, W2V embeddings as input 0.85 0.85 0.85 0.68 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 0.87 0.87 0.87 0.69 0.69 0.69 0.93 0.93 0.93 0.71 0.71 0.71
12 - like 10, plus per-field DFs 0.85 0.85 0.85 0.69 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70
13 - like 10, plus index frequency 0.77 0.77 0.77 0.62 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

0 OpenSource
9 Connections

e HAYSTACK

Query relaxation: strategies

Obvious intuition but low coverage

Strategies from 2019 revisited
iphone 15 => iphone 45

Judgment Type Best previously seen relaxed query Any previously seen relaxed query
Data set FREQ CcoocC FREQ COoO0C
Metric P R /Ff P R F1 B R F1 P R F1
0 - Drop random term 0.46 W 0.46 0.46 0.46 0.46 0.61 0.61 0.61 0.47 0.47 0.47
1-Dro 0.38 0.38 0.38 0.48 0.48 0.48 0.54 0.54 0.54 0.49 0.49 0.49
2 - Drop shortest non-alphabetical term ™ 0.05 0.09 0.45 0.04 0.08 0.55 0.05 0.09 0.46 0.04 0.08
3-UseZ; 0.40 0.40 0.40 0.49 0.49 0.49 0.56 0.56 0.56 0.50 0.50 0.50
4 - Drop most frequent term 0.25 0.17 0.20 0.44 0.35 0.39 0.56 0.38 0.45 0.45 0.36 0.40
5 - Drop least frequent term 0.79 0.79 0.79 0.60 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop term with highest entropy 0.29 0.27 0.28 0.43 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43
7 - Drop term with lowest entropy 0.32 0.32 0.32 0.29 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
8 - keep most similar query (Word2vec) 0.82 0.81 0.82 0.61 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62
9 - keep most similar query (‘Query2vec') 0.66 0.07 0.13 0.64 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - MNN, W2V embeddings as input 0.85 0.85 0.85 0.68 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 0.87 0.87 0.87 0.69 0.69 0.69 0.93 0.93 0.93 0.71 0.71 0.71
12 - like 10, plus per-field DFs 0.85 0.85 0.85 0.69 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70
13 - like 10, plus index frequency 0.77 0.77 0.77 0.62 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

kel AYSTACK

Query relaxation: strategies

Good quality, easy implementation

Strategies from 2019 revisited Preferred solution if team can’t ramp up M/L
easily
Judgment Type Best previously seen relaxed query Any previously seen relaxed query
Data set FREQ 00C FREQ Co0oC
Metric P R F1 P R F1 P R F1

0.46 0.46 0.46 0.61 0.61 0.61 0.47 0.47 0.47
0.48 0.48 0.48 0.54 0.54 0.54 0.49 0.49 0.49
0.45 0.04 0.08 0.55 0.05 0.09 0.46 0.04 0.08
0.49 0.49 0.49 0.56 0.56 0.56 0.50 0.50 0.50

0 - Drop random term
1 - Drop shortest term
2 - Drop shortest non-alphabetical term
3 - use 2, fallbackto 1

4-Dr 0.44 0.35 0.39 0.56 0.38 0.45 0.45 0.36 0.40
5 - Drop least frequent term 0.60 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop Tt y 0.43 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43

0.29 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
0.61 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62

7 - Drop term with lowest entropy
8 - keep most similar query (Word2vec)

9 - keep most similar query (‘Query2vec') 0.66 0.07 0.13 0.64 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - MNN, W2V embeddings as input 0.85 0.85 0.85 0.68 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 0.87 0.87 0.87 0.69 0.69 0.69 0.93 0.93 0.93 0.71 0.71 0.71
12 - like 10, plus per-field DFs 0.85 0.85 0.85 0.69 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70

13 - like 10, plus index frequency 0.77 0.77 0.77 0.62 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

kel AYSTACK

Query relaxation: strategies

Represent original query and relaxed query
Strategies from 2019 revisited candidates by a vector embedding. Keep the
candidate that is most similar to the original query
, (cosine).
Judgment Type Best previously seen relaxed query
Data set FREQ
Metric B R EL Pl Word embeddings: sum over word vectors
0 - Drop random term 0.46 0.46 0.46 0.46 ; . c c
1 - Drop shortest term 038 038 o038 o04s| Query embeddings: train based on user sessions
2 - Drop shortest non-alphabetical term 0.52 0.05 0.09 45
3 - use 2, fallback to 1 0.40 0.49
4 - Drop most frequent term 0.25 0.44
5 - Drop least frequent term 0.79 0.60 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop term with highest entropy 0.29 0.43 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43
7-D 0 0.29 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
- keep most similar query (Word2vec) > 0.81 0.82 0.61 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62
- keep most similar query (‘Query2vec! 0.66 0.07 0.13 0.64 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - ; i put 0.85 0.85 0.85 0.68 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 0.87 0.87 0.87 0.69 0.69 0.69 0.93 0.93 0.93 0.71 0.71 0.71
12 - like 10, plus per-field DFs 0.85 0.85 0.85 0.69 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70
13 - like 10, plus index frequency 0.77 0.77 0.77 0.62 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

e HAYSTACK

Strategies: Query similarity based on sequence embeddings

[15]

[iphone 15]

[iphone]

LLM (minilm)
embeddings

iphone 15
iphere 15
iphone 45

kel AYSTACK

Query relaxation: strategies

Represent original query and relaxed query
It's 2023 and LLMs have become available! | candidates by a vector embedding. Keep the
candidate that is most similar to the original query
, (cosine).
Judgment Type Best previously seen relaxed query
Data set FREQ
Meliic b i i Pl Query embeddings based on minilm
0 - Drop random term 0.46 0.46 0.46 0.46
1 - Drop shortest term 0.38 0.38 0.38 0.48 .
2 - Drop shortest non-alphabetical term 0.52 0.05 0.09 0.45 Advantage: we don’t rer on embeddlngs for
3 - use 2, fallback to 1 0.40 0.40 0.40 0.49 A F
4 - Drop most frequent term 0.25 0.17 0.20 0.44 preVIOUSIy SEE0 querleS
5 - Drop least frequent term 0.79 0.79 0.79 0.6 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop term with highest entropy 0.29 43 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43
7 - Drop term with lowest entropy 0.32 0.29 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
8 - keep most similar query (Word2vec) 0.82 0.61 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62
9 - keep most similar query (‘Query2vec') 0.64 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - MNN, W2V embeddings as input 0.85 0.68 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 0.87 0.69 0.69 0.69 0.93 0.93 0.93 0.71 0.71 0.71
12 - like 10, plus per-field DFs 0.85 0.69 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70
13 - like 10, plus index frequency 0.77 0.62 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

Keep most similar query (minilm

query embedding)
Heads-up: this is a different dataset!

6 OpenSource
O Connections

e HAYSTACK

Query relaxation: strategies

Replicate the winner strategy from 2019 to the

Can we beat the winner from 20197 new dataset for comparison.

Multi-layer neural network with word embeddings

Judgment Type Best previously seen relaxed query . .

P FREQ and wordshape features as input and index of

Metis i R i Pl term to drop as output

0 - Drop random term 0.46 0.46 0.46 0.46

1 - Drop shortest term 0.38 0.38 0.38 0.48

2 - Drop shortest non-alphabetical term 0.52 0.05 0.09 0.45

3 - use 2, fallback to 1 0.40 0.40 0.40 0.49

4 - Drop most frequent term 0.25 0.17 0.20 0.44

5 - Drop least frequent term 0.79 0.79 0.79 0.6 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61

6 - Drop term with highest entropy 0.29 0.27 0.28 43 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43

7 - Drop term with lowest entropy 0.32 0.32 0.32 0.29 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30

8 - keep most similar query (Word2vec) 0.82 0.81 0. 0.61 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62

9 - keep most similar query (‘Query2vec') 0.66 0.07 13 0.64 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19

10 - MNN, W2V embeddings as input 0.85 0.85 0.85 0.68 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69

11 - like 10, plus wordshape features 087/ 069 069 069 093 093 093 071 071 0.71

12 - like 10, plus per-field DFs 0.85 0.85 0.85 0.69 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70

13 - like 10, plus index frequency 0.77 0.77 0.77 0.62 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63
Keep most similar query (minilm 0.60 0.60 0.60

query embedding)

keIt AYSTACK
MNN / Word2vec plus wordshape

0:0 0:1 0:0 0:0 0:0 0:0 0:0 0:0

2 hidden layers

301: 4.00 301: 5.00 301: 2.00 301: 0.00 301: 0.00 301: 0.00 301: 0.00 301: 0.00
302: 0.00 302: 0.00 302: 2.00 302: 0.00 302: 0.00 302: 0.00 302: 0.00 302: 0.00
303: 1.00 303: 0.00 303: 0.00 303: 0.00 303: 0.00 303: 0.00 303: 0.00 303: 0.00

nike boots 11

(Dimensions 1-300 are word embeddings) 2

kel AYSTACK

Query relaxation: strategies

Replicate the winner strategy from 2019 to the

Can we beat the winner from 2019? new dataset for comparison.
. Multi-layer neural network with word embeddings

Judgment Type Best previously seen relaxed query . .
it FREQ and wordshape features as input and index of
Metis i R term to drop as output
0 - Drop random term 0.46 0.46
1 - Drop shortest term 0.38 0.38
2 - Drop shortest non-alphabetical term 0.52 0.05 + Fixed: not ignoring query token order!
3 - use 2, fallback to 1 0.40 0.40
4 - Drop most frequent term 0.25 0.17
5 - Drop least frequent term 0.79 0.79 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop term with highest entropy 0.29 0.27 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43
7 - Drop term with lowest entropy 0.32 0.32 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
8 - keep most similar query (Word2vec) 0.82 0.81 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62
9 - keep most similar query (‘Query2vec') 0.66 0.07 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - MNN, W2V embeddings as input 0.85 0.85 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 069 069 093 093 093 071 071 0.71
12 - like 10, plus per-field DFs 0.85 0.85 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70
13 - like 10, plus index frequency 0.77 0.77 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

Keep most similar query (minilm 0.60 0.60
query embedding)
MNN, W2V & wordshape as input 0.98 0.98 0.98

keIt AYSTACK
Fine-tuned LLM to predict term to drop

0:0 0:1 0:0 0:0 0:0 0:0 0:0 0:0

Fine-tuned
xIm-roberta-base-squad2-distilled

(Tokenized, token IDs)
nike boots 11

26

kel AYSTACK

Query relaxation: strategies

Fine-tuned LLM to predict the term to drop

Can we beat the winner from 20197 On par with winner from 2019!

- Only single model to fine-tune vs. training

Judgment Type Best previously seen relaxed query word embeddings and neural network
Dat t FRE o . q
ey a - We'll never have to deal with missing
etric P R .

0 - Drop random term 0.46 0.46 em beddlngS
Lathapaionesyem 000 Dz - 0.98 means: we can only improve quality by
2 - Drop shortest non-alphabetical term 0.52 0.05 . .
3 - use 2, fallback to 1 0.40 0.40 Chang|ng the datasets that we train on
4 - Drop most frequent term 0.25 0.17
5 - Drop least frequent term 0.79 0.79 0.60 0.60 0.90 0.90 0.90 0.61 0.61 0.61
6 - Drop term with highest entropy 0.29 0.27 0.41 0.42 0.45 0.43 0.44 0.44 0.42 0.43
7 - Drop term with lowest entropy 0.32 0.32 0.29 0.29 0.46 0.46 0.46 0.30 0.30 0.30
8 - keep most similar query (Word2vec) 0.82 0.81 0.61 0.61 0.91 0.90 0.90 0.63 0.62 0.62
9 - keep most similar query ('‘Query2vec') 0.66 0.07 0.11 0.18 0.87 0.10 0.18 0.65 0.11 0.19
10 - MNN, W2V embeddings as input 0.85 0.85 0.68 0.68 0.90 0.90 0.90 0.69 0.69 0.69
11 - like 10, plus wordshape features 0.87 0.87 0.69 0.69 0.93 0.93 0.93 0.71 0.71 0.71
12 - like 10, plus per-field DFs 0.85 0.85 0.69 0.69 0.92 0.92 0.92 0.70 0.70 0.70
13 - like 10, plus index frequency 0.77 0.77 0.62 0.62 0.86 0.86 0.86 0.63 0.63 0.63

Keep most similar query (minilm 0.60 0.60

query embedding)

MNN, W2V & wordshape as input 0.98 0.98

Fine-tuned LLM 0.98 0.98 0.98

T AYSTACK
Alternative Queries: token replacement

UX: keep users engaged by providing them with alternative queries that relate to
their original intent

Queries with narrow focus can be more interesting to interact with

audi a1l => audi a2 VS audi a1l => audi a4

2k T H AYSTACK
Token replacement: Known strategies

[audi a3]
[paper a4] [audi a4]
.......................... Vector
embeddings
Vector similarity between current model

query and known queries

: L audi a3 (orig.)
String similarity (added or alone)

audi a4

o _ paper a4
=> limited to known queries

=> try out generative model

kel AYSTACK

Token replacement: Fine-tuned fill-mask LLM

Fill-mask model generates tokens to replace a masking token ([MASK]):

This is a new [MASK]
[MASK] 1s a great singer.

Experiment: fine-tune distilbert-base-uncased for mask-filling using ca. 400k queries
that do have results

kel AYSTACK

Token replacement: Fine-tuned fill-mask LLM

1) Find term to drop via query relaxation
2) Generate candidate terms to fill the gap
3) Apply some string similarity metrics

between dropped and generated token, pask ritlent auad AN, soprieio)
. o« e . . [{ ' 0. ’
combine similarity with score from L ihent} S37aq 5429660996002

'token': 23746,

maSk'ﬁlhng 'sequence': 'audi tt'},
{'score' T 0.039768572896
'token': 12667,
'token_str': 'rs',
'sequence': 'audi rs'},
. . {'score': 0.0217595137655735,
audi al => audi [MASK] "token': 1055,
, 'token_str': 's',
audi [MASK] => 'sequence': 'audi s'},
, , {'score': 0.0172894150018692,
audi [MASK] => audi a2 ‘token': 1037,
'token_str': 'a',
'sequence': 'audi a'},
{'score': 0.011615365743637085,
'token': 22441,
'token ': '52¢

'sequence': 'audi a2'},

kel AYSTACK

Token replacement: Fine-tuned fill-mask LLM

query relaxed_query alt_query

Seems to work best for replacing model numbers o - S
coches baratos coches coches camping

audi a3 audi audi a2

Many O-result queries will be modified into the same target query i peinde pabbtuariige
coches de segunda mano coches segunda mano coches para segunda mano

sofas cheslong sofas sofas exterior

M aybe Sta rt W | t h q u e ry re I axat | o n a n d u Se a |te r n atlve q u e ry fO r coches segunda mano particular coches segunda mano coches segunda mano vintage
boosting? —— - el
(aUdi a.l :> aUdi OR (aUdi AND 8.2) honda civic honda honda cb
audi a5 audi audi a2

. . armario ropero armario armario exterior
Evaluation dataset could be based on per-session query e ercodes oo it
m Od iﬁ ca t i ons pisos en venta pisos venta pisos de venta
audi g5 audi audi tt

. . . peugeot partner peugeot peugeot 206
BUSlneSS SUCCGSS Of querles COUId be mOde”ed |nt0 the approaCh mercedes vito mercedes mercedes sprinter
more easily than in query relaxation s &= e

wolkswagen polo polo volkswagen polo

What we put into practice at

@ wallapop

ke AYSTACK

Query Relaxation: Strategies

e Strategy:
o Drop the least frequent term from the search query (step by step soon).
e Reason:

o Speed is important. We need to operate at scale and complex machine learning models in
production needs more time to implement and maintain properly.

o lterative approach. We will come back for the other advanced techniques later, but we need
to start from somewhere.

e Limitations:
o Document frequency is not an "always correct" approach to select tokens.
o The least frequent terms in a query can sometimes carry important semantic meaning.

kel AYSTACK

Query Relaxation: Dataset and offline evaluation

We need data for offline evaluation (and "long query" "short query"
maybe for training) pisos alquiler pisos
Foundation: pairs of long and short coches baratos coches
queries, where the short query is a audi a4 avant audi a4
subquery of the long one apple watch watch

/ N

Found in Found in
query logs query logs

Should have
results

kel AYSTACK
Query Relaxation: Dataset generation
Approach to generate a dataset of "relaxed query" given a "long query" that

returned no results:

e Collect you data:

o Historical search queries that had more than 1 token and returned results.
o Historical search queries that returned no results.

ke AYSTACK

Query Relaxation: Dataset generation

e Generate your labeled dataset based on historical data.
o Clean your input data: Lower case, remove/keep (un)wanted characters, etc...
o Generate all combinations from the "long queries" with a missing token (These are your
relaxed query candidates).

o Find the relaxed query candidates in the historical searches that returned results (track the
number of times they were searched as well).

Long query: "iphone 14 plus".

o Relaxed query candidates: [iphone 14, iphone plus, 14 plus]

m Number of times the relaxed query was previously seen:
e iphone 14: 150 times.
e iphone plus: 1 time.
e 14 plus: not found.

keIt AYSTACK
Query Relaxation: Dataset generation

e Save the dataset (as TSV):

(but you must have more, way more)

search_term_zero_results relaxed_query relaxed_query_frequency is_best is_acceptable

iphone 14 plus iphone 14 150 True True

iphone 14 plus iphone plust 1 False False

keIt AYSTACK
Query Relaxation: Retrieve the Document Frequencies

e Get the document frequency of each individual token from your index.
e Sauve this dictionary as JSON (so we can use it as a cache later)

"14": 210050,
"iphone": 200000,

"plus”: 91000,

T AYSTACK
Query Relaxation: Dataset evaluation

e Generate relaxed query candidates based on the DF of the tokens.

o Load the labeled dataset we generated earlier.
o For each row, split the "long query" by space and for each token in the list, retrieves the

document frequency.
o Drop the term with the lowest DF (or a stop word, depending on your algorithm).
o Add a column to the dataset called 'pred' with the 0-based position of the token to be dropped

Check the accuracy of your model: how many times does the label == pred?

T AYSTACK
Query Relaxation: Dataset generation

e Generate relaxed query candidates based on the DF of the tokens.

o Load the labeled dataset we generated earlier.
o For each row, split the "long query" by space and for each token in the list, retrieves the

document frequency.
o Drop the term with the lowest DF (or a stop word, depending on your algorithm).
o Add a column to the dataset called 'pred' with the 0-based position of the token to be dropped
Check the accuracy of your model: how many times does the label == pred?

We've got ~80% accuracy.

T AYSTACK
Conclusion & Outlook

Alternative queries:

- Can be formed by query relaxation or token replacement
- Have a good explainability

- Query relaxation:
- Quality mainly depends on what we tell the model in the training data
- LLMs can be fine-tuned to predict the term to be dropped - overcoming limitation of unknown tokens in word embeddings

- Alternative queries:
- Harder to test
- We need to understand the potential better from the user perspective
- Al opens the door for creativity in solving UX

Putting solutions into practice

- Ease of implementation and of putting solution into production beats accuracy for now - the simple solutions
allows us to get user feedback quickly
- A/B test to be put into production - we'll iterate on the implementation

