
Combining inverted and ANN
indexes for scale
Anubhav Bindlish
Rockset

About me

● Software Engineer at Rockset (2021-Present)

○ We are a real time search and analytics platform based on Rocksdb
○ Have worked on data indexing and query execution
○ Vector search integration using FAISS (IVF)

● Software Engineer at Facebook (2016 - 2021)

○ Team built a rule engine which decided “Is this action allowed”
○ Written in Haskell
○ Clear transition from heuristic -> ML based rules in the 5 years I was here
○ Trend likely going to intensify in the industry with the advent of LLMs

Contents

1. Converged Index

2. How to add an ANN index to this?

a. Manage memory required to hold vector data and indexed structures

i. Choose indexing approach wisely

ii. Inverted indexes on flat files

iii. Single-stage metadata filtering + CBO

b. How to distribute an ANN graph across multiple shards and avoid expensive

reindexing

c. How to update vector embeddings or metadata quickly

d. How to avoid contention between heavy indexing and vector search

Inverted indexes for text search

term posting lists

give 1

a 1,2

man 1,2

program 1,2

frustrate 1,2

him 1,2

for 1,2

day 1

teach 2

to 2

lifetime 2

1. Map terms=>docId

2. Store posting lists per term

Doc 1: Give a man a program frustrate him for a day

Doc 2: Teach a man to program frustrate him for a lifetime

What we built at Rockset- Converged Index

Key Value

R.0.name Igor Row Store

R.1.name Dhruba

C.name.0 Igor Column Store

C.name.1 Dhruba

S.name.Dhruba.1 Search index

S.name.Igor.0

<doc 0>
{
 “name”:“Igor”
}

<doc 1>
{
 “name”:“Dhruba”
}

SELECT keyword, count(*)

FROM search_logs

GROUP BY keyword

ORDER BY count(*) DESC

Column Store
(for large scans)

SELECT keyword, count(*)

FROM search_logs

WHERE keyword=’chair’

ORDER BY count(*) DESC

Search Index
(for highly selective queries)

Index the value of fields in an Inverted Index, Column Store and Row Store.

Storage engine

● Rockset uses RocksDB as underlying storage

○ Key-Value store. LSM architecture. Great for ingest
throughput.

● Multiple records accumulate in memory and are written into a
single SST file

○ Maximise throughput

● Keys are sorted between SST files via compaction in a
background process

● Rockset delivers 20Mb/s at 70ms data latency

○ [link]

https://rockset.com/blog/when-real-time-matters-rockset-delivers-70ms-data-latency-at-20mb-s/

Rocksdb writes

Converged index + ANN

Key Value

R.0.name Igor Row Store

R.1.name Dhruba

C.name.0 Igor Column Store

C.name.1 Dhruba

S.name.Dhruba.1 Search index

S.name.Igor.0

Vectors are a new data type, vector search is just a new query processing approach.

Have a lot in common with already solved database problems.

Databases & ML are not all that different

Lack of a common language

Fragmentation of ideas

Inverted File index for ANN Search/Inverted Index around since 90s

Metadata Filtering SQL `WHERE` predicates

k-nearest neighbors ORDER BY distance LIMIT k

Why add ANN indexes?

Converged Indexing

● Exact/partial matches (inverted index)
● Filters (inverted index)
● Large scans (column store)
● Joins

ANN Indexes

● Fuzzy/broad search
● Similarity search
● Better user experience, for eg, personal

feed

Show me all the restaurants I might like (a vector search) that are located within 10 miles and are
low to medium priced (filter)

Find me all images of cat (a vector search) uploaded last week (filter)

Is this user behavior “bad” (vector search) and it is a new user account (filter)

Known design challenges

● Index building is expensive

● How to search across metadata and vector embeddings

● How to distribute an ANN graph across multiple shards and avoid
expensive reindexing

● How to update vector embeddings and metadata quickly

● How to avoid contention between heavy indexing and search

ANN indexes
Find me K vectors closest to my query vector

Note: high dimensional space.

https://en.wikipedia.org/wiki/
Curse_of_dimensionality#Nearest_neighbor_search

Source: https://ann-benchmarks.com/nytimes-256-angular_10_angular.html

Trade offs, Trade offs

ANN indexes

- Inverted File (IVF)
- Decent search performance; fast insertions; low memory usage

- Hierarchical Navigable Small worlds (HNSW)
- Very good search performance; slow insertions; high memory usage

- FlatIP / FlatL2
- Terrible search speeds; only suitable for small datasets

- Locality Sensitive Hashing (LSH)
- Suitable for low dimensional data

- Composite
- Cause why not?

Index build times

- Important if you add new vectors to your database often
- Or update existing vectors (for eg: user’s preferences might change for recommendation

engine)

Source: ANN benchmarks https://arxiv.org/pdf/1807.05614.pdf

How Inverted File Index works

Centroid

Probe

Cell
FAISS assigns vectors to Voronoi cells. Each cell is

defined by a centroid.

Add IVF index to the Converged Index

1. Create similarity index and store file of centroid identifiers in memory

Create similarity index using configuration (ie: FAISS:IVF:100…FAISS:IVF:1000…). Cluster data
in cells by centroid.

FAISS provides 1000 centroids and stores in a small file of cell identifiers in memory.

Number
Centroid
Value

1 Ctd 101

2 Ctd 102

3 Ctd 103

...

1000 Ctd 109

Small file in
memory

Add IVF index to the Converged Index

2. Store centroid and residual with each record

Leverage multiple threads in parallel to create the similarity index.

Add two fields to each record: Centroid and Residual

Data may need to be retrained periodically (i.e., recompute centroids)

Centroid Residual Name Age Location
Vector
Embedding

1 10.36 Edwin Jarvis 49 Malibu, California [......]

1 4.53
Samantha
Morton 46

Los Angeles,
California [.....]

3 2.13
Marvin
Adams 23

Everywheresville,
United Kingdom [.....]

Vector embedding
passed to FAISS

FAISS returns centroid
and residual

You have the
index
Now what?

SQL for similarity search

We didn’t want to add a DSL for similarity search. So how to express vector similarity in SQL?

Use ORDER BY

For eg; find restaurants I might like in LA

SELECT name
FROM restaurants
WHERE location= ‘Los Angeles, California’
ORDER BY approx.sim_index(emb,query)
LIMIT 5

SQL for similarity search

Under the hood, Rockset’s query optimizer asks FAISS for the centroids which are closest to query
vector

FAISS returns 3 centroids. Rockset now rewrites the query as:

SELECT name
FROM restaurants
WHERE location= ‘Los Angeles, California’
WHERE centroid = 2 OR centroid = 4 OR centroid = 1000
LIMIT 5

Now we can leverage our inverted index to evaluate this query.

Still have the selectivity estimation problem!

“Give me 5 nearest neighbors where <filter>.”

● What if the centroid for query vector is “dense”

● Different predicates. Different selectivities.

● Reordering? Planning? Optimizing?

● Running filters fast is a well studied database problem.

● Cost-based query optimizer

● Build histograms => Run cost models => Select Access Path

Metadata filtering

Pre-filter + Single-stage filter + Selectivity estimation = 🔥

“Give me 5 nearest neighbors where <filter>.”

Filter is not very selective…..
● Post filter
● First get points in cells,

then apply filter

Filter is very selective…..
● Pre-filter
● Filter first, and then just

scan

Single-stage filtering

Search x closest centroids
(ie: x = 3)

Apply filter Sort Results

NOT to be confused with post or pre filtering.

Filters are run after finding centroids, but before heap-sort.
Single Stage Filtering balances trade offs better.

Might consider alternatives for highly selective queries.

Pre-filtering Great for highly
selective queries

Post-filtering Great for “non-dense”
cells

Single-stage filtering

The problem of
sharding

To shard or not shard your index

Single machine Sharded DB

Rockset leverages document sharding for low latency

● A single query is able to parallelize
across all CPU on your cluster

● Microshards within every shard to
allow easier re-sharding

● Every shard has its own Converged
Index

● Just merge and return results

Hard problem:
Incremental
updates

How do we handle updates?

[......]
[......]
[......]
[......]

[......]
[......]
[......]
[......]
[......]
[......]
[......]
[......]
[......]
[......]

[......]

● Can I add new
vectors/update vectors to
my database?

● Data latency! New vectors
need to be queryable

● Naively inserting has speed
+ accuracy

○ Balanced-binary-
search tree analogy

● Also, mutation, deletion.

How Rockset solves this: Update, update, update……reindex

Rockset is mutable at the individual field
level:

1. You update the vector embedding

2. Query FAISS to generate the
centroid and residual

3. Rockset updates the centroid and
residual values for the record

4. This means new records are
queryable within ~100ms

Still need to retrain index periodically to
keep recall high.

Centroid Residual Name Age Location
Vector
Embedding

1 10.36 Edwin Jarvis 49 Malibu, California [......]

1 4.53
Samantha
Morton 46

Los Angeles,
California [.....]

3 2.13
Marvin
Adams 23

Everywheresville,
United Kingdon [.....]

❗You update this
value

Rockset updates these
values

CPU contention
between indexing
and search

Reindexing Resource contention ⇒

Ingestion and
indexing

Search queries

Cluster

Index and search should isolate

Ingestion and
indexing

Search queries

But how do we address that real-time thing?

Compute-Compute Separation

Shared
hot storage

Data stream
Vector

Search App
Leader/follower replication
makes fresh data available
in all RocksDB instances

● Replication stream sends
data and metadata
changes to follower

● Applying memtable
updates takes 6× to 10×
less CPU and RAM than
complete ingest

● Followers don’t run
compaction

SSD

Optional
Search

Updat
e

Searc
h

Vector
Search App

Memtable Memtable

Shared storage

Streaming ingest
compute

 Query compute

Virtual instance Virtual instance

Virtual instances

Query
Compute Cluster

Query compute

Data stream App 1 App 2

Storage

Streaming ingest &
query compute

Data stream App

Then: Shared compute architecture

Now: Compute-compute separation

Introducing compute-compute separation

Lessons learned

● All vector search applications will require metadata filtering. Need a
system that can do enable these without additional cost.

● Database and ML have more in common than we think, lack of a
common language.

● Need to design for scale! This is a big data problem. Don’t kick the
can (ie: sharding + isolation) down the road.

Thankyou

Twitter @RocksetCloud

linkedin https://www.linkedin.com/company/rocksetcloud/

	Combining inverted and ANN indexes for scale
	About me
	Contents
	Inverted indexes for text search
	What we built at Rockset- Converged Index
	Storage engine
	Rocksdb writes
	Converged index + ANN
	Databases & ML are not all that different
	Why add ANN indexes?
	Slide 11
	Known design challenges
	ANN indexes
	Trade offs, Trade offs
	ANN indexes (2)
	Index build times
	How Inverted File Index works
	Add IVF index to the Converged Index
	Add IVF index to the Converged Index (2)
	You have the index Now what?
	SQL for similarity search
	SQL for similarity search (2)
	Still have the selectivity estimation problem!
	Metadata filtering
	Pre-filter + Single-stage filter + Selectivity estimation = 🔥
	Single-stage filtering
	The problem of sharding
	To shard or not shard your index
	Rockset leverages document sharding for low latency
	Hard problem: Incremental updates
	How do we handle updates?
	How Rockset solves this: Update, update, update……reindex
	CPU contention between indexing and search
	Reindexing ⇒ Resource contention
	Index and search should isolate
	Compute-Compute Separation
	Introducing compute-compute separation
	Lessons learned
	Thankyou

