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Wisdom of the Crowd

• Jar of Jellybeans problem

• Statistical Aggregate Average of 
guesses by many participants

• Random rater role, expertise, & 
experience assumed

• Works better with a lead guess

• Often very wide result standard 
deviations

• Tends toward a close but not 
necessarily exact or repeatable 
answer

Subject Matter Experts

• Informed judgements 

• Statistical Mode Aggregate of 
responses from a few experts

• Training, Experience, Expertise

• Frequently very high agreement

• Blind HRT studies tend toward a 
highly repeatable, very accurate 
response

2



Copyright 2021 by RELX / LexisNexis

Proprietary & Confidential 3

• Same DCG formula used by both eDCG and hDCG

• Sum of ((2^relevance score -1)/ log2 (position of document +1) )  for the top N documents

• Three Assumptions behind this metric:

• Highly relevant documents are more useful than marginally relevant documents

• The lower the ranked position of a relevant document, the less useful it is for the user, since it is less 

likely to be examined

• More documents that are relevant are better than fewer

Discounted Cumulative Gain (DCG) in a nutshell
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Two Kinds of DCG: Engagement and HRT

Engagement / eDCG

• Based on Wisdom of the Crowd 
assumption that customer 
engagement with documents in 
the result set is indicative of 
relevance

• Relies on aggregate usage 
statistics

• Useful result for A/B testing, 
charactering user experience 

HRT / hDCG

• Based on Subject Matter Expert 
ratings of query-document 
relevance

• Relies on ratings from selected 
query document pair sets

• Useful for pre-release metrics, 
algorithm evaluation, 
competitive benchmarking, and 
post-release regression 
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Sometimes results agree, sometimes don’t agree, sometimes neutral
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Goal: Direct hDCG vs eDCG Comparison

• Does eDCG = hDCG for the same queries?

• Do eDCG and hDCG scale? 

• How do they relate?

• Are they equally sensitive?

• Is one more useful than the other?
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eDCG / hDCG Comparison Flowchart
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Collecting Engagement Scores

Review

Link out

View
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Aggregating results to get engagement reli

• Convert Interactions to relevance rating via an engagement model:
• Record engagement statistics (along with query, rank, and document information)

• Thousands of times over a brief (4-6 week) window with a consistent algorithm

• Aggregate engagement ratings across all users to get an average engagement reli  for 
each query

9

reli Relevance Sample Engagement Model*

1 None / Weak Default (no interaction) OR Dwell time lower than 10 seconds)

2 Fair (Dwell time >= 10s AND Dwell time < 60s) OR Link-out actions

3 Good (Dwell time >= 60s AND Dwell time < 180s) AND Link-out Action OR 
Downstream Action OR Review Action

4 Strong Dwell time >= 180s AND (Downstream Action OR Review Action OR Link-Out)

• Downstream Actions: download, email, print, printer friendly view.
• Link-out Actions: follow link to citation, follow internal document link
• Review Actions: annotate, highlight, save to folder, and share folder saved document.

** Engagement models may be sensitive to changes in user types, content types, query types, and other parameters
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Collecting Document SME ratings

• SME raters are given a query 
document pair to review.

• A rating rubric and 
guidelines are provided to 
SMEs to assist with 
consistent application of 
scores and in handling 
ambiguous queries. 

• Three ratings are collected 
for each query-document 
pair and a majority rule 
(mode) is applied in cases 
where all three reviews do 
not agree.
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Aggregating results to get SME reli
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reli Relevance SME Judgement

4 High Great search result meets the information need behind query intent / precisely answers the 
research question that the query poses.

3 Good Good search results don’t quite meet the information need behind the query intent / may be 
somewhat related and thus still useful.

2 Fair Fair results are weakly related to the query / may provide a little information. Query Terms may not 
be related to one another in a meaningful way.

1 Poor Poor results don’t add any value. Results may be confusing, out-of-date, or misleading. 

Combined ratings mode for multiple SME raters = reli
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eDCG / hDCG Comparison Flowchart
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Computing engagement DCG (eDCG)

p = rank

reli = mode engagement value of rating set computed from aggregated 
results
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Computing human DCG (hDCG)

p = rank

reli = Mode of query document ratings provided by multiple SMEs

In
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eDCG / hDCG Comparison Flowchart
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Search Test Framework Result Types

17
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Hypothesis 1: 

eDCG and hDCG should be near equal across frequently asked NL queries 
for ranks [3] and [5]. 

Hypothesis 2: 

eDCG and hDCG should be roughly equal across the query set at ranks [3] 
and [5].

18

Formal Experiment Statement
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eDCG vs. hDCG Comparison Process 1:

• Requirements 
• Same queries 
• Same search algorithm
• Same document view UI for raters

• Process
• Extract ~400 representative queries* from the most frequently asked Natural 

Language user queries in the customer query list
• Retrieve & compute document eDCG for each query-document pair in set**
• Rate the same representative queries using an HRT job and SMEs
• Retrieve & compute hDCG data for each query-document pair in set**
• Compare eDCG and hDCG results, query by query, and as statistical composites

19
* Determined by customer query logs ** down to rank [5]
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eDCG vs. hDCG Comparison Process 2:

• Queries: 400 representative queries from most frequently asked eDCG logs
• 391 Natural Language
• 9 Boolean*
• 358 queries with complete results down to rank [5], permitting computation of DCG[5]
• Also broken down into 16 query type sub-classes

• Query Document Pairs
• Reli Ratings Range: 1 (least relevant) to 4 (best relevance) based on customer engagement 

or SME rater
• All query document pairs down to rank[5]

• Metrics Computed: hDCG, eDCG  

• Tools:
• HRT Computation and Comparison Tools: STF
• A/B Testing and Engagement Computation Tool: ABE 

20
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eDCG vs. hDCG Comparison Process 3:

• Not considered in this study:
• Less frequently asked queries
• Higher rank query-document pairs ( q.v. ranks [6] through [10] )
• Boolean queries
• Multiple Content Types 
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At first blush, eDCG[5] and hDCG[5] seem to track but have some significant offsets.

Visualization for Comparison Test Result for eDCG_vs_hDCG-Depth5_358Queries, Queries 101-200

This is a deceptive conclusion and a result of the brain wanting to see a pattern.

Raw Results: eDCG[5] and hDCG[5] Comparison



When both data sequences are re- sorted by descending hDCG[5] value, the eDCG[5] control trend line 
does NOT mirror the sorted Test (hDCG) values.

Analysis 1: Sorted eDCG[5] and hDCG[5] Results

Visualization for Comparison Test Result for eDCG_vs_hDCG-Depth5_358Queries, Queries 101-200



Even when scaled by the average values for both eDCG and hDCG to account for scale magnitude, there is very poor 
correlation.

The actual correlation coefficient between eDCG[3] & hDCG[3] is 0.014, and between eDCG[5] & hDCG[5] is 0.0221, both 
nearly zero. An actual value of zero is a perfect non-correlation. 

Analysis 2: Scaled eDCG and hDCG Results

Scaled Average DCG = x – xavg / std dev 
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[3] [5]

Avg Normalized
DCG[3]

Correlation
Coefficient

Avg Normalized
DCG[5]

Correlation
Coefficient

N_Results 382 359

Avg eDCG 6.43 8.89

Avg hDCG 11.47 15.88

Query Nos. 1-100 0.109 0.093

Query Nos. 101-200 -0.048 - 0.074

Query Nos. 201-300 -0.071 0.078

Query Nos. 301-358 0.138 0.018

Composite: Query Nos. 1-358 0.015 0.021

0.089 upper err 0.097 upper err

0.014 (avg) 0.021 (avg)

0.075 (std dev) 0.076 (std dev)

- 0.061 lower err - 0.055 lower err

Results: eDCG and hDCG Correlation Results

Correlation Coefficients remain very nearly equal both for query sets and complete results
25
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Experiment Conclusions

• Does eDCG = hDCG at ranks [3] and [5]? 

• No, hypothesis (1) is proven false.

• Does eDCG[3] and eDCG[5] scale to hDCG[3] and hDCG[5]?

• No, hypothesis (2) is proven false as well.

• How do they relate?

1. eDCG nearly always has a lower numeric value than hDCG.

2. eDCG and hDCG have virtually no actual correlation.

3. Normalizing for scale does not impact the lack of correlation or 
trend.
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Is one metric more correct than the other?

• Since the metrics are not equal and display no apparent shared trends for 
this dataset, neither metric appears to be more useful or more correct 
given the data.

• Usage assumptions, metric properties and use of a specific metric may 
drive the use of some metrics over others.

• Subsequent work to reduce bias and explore other aspects of comparison 
are needed to recommend use or development of a specific metric.

27
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Potential Sources of eDCG / hDCG Biases
• Query Bias: unusually high DCG average & predominantly NL queries 

(Other query types (Boolean, SDR, Navigational) may show different behaviors)

• Content Types Bias may show different behaviors 

(not tested yet)

• Engagement model Bias: other models may show different behaviors 

(not tested yet due to complexity, lack of correlation to user experience)

• Presentation Bias / Lead Cow Advantage for engagement raters  
(SMEs don't see the results list or make decisions based on rank position)

• Wisdom of the Crowd vs Expert Bias 
(WoC random roles, Competence, and Experience levels vs experienced, expert, raters)

• Imbalance in average rating scores: eDCG 1-4, hDCG 3-4 

(unknown effect)

• Imbalance / variability in number of engagements per query rank vs constant for hDCG 
(may show that WoC assumption not valid all the time)

• Missing rank values in eDCG set reduced number of queries available 

(381/400 and 359/400 for eDCG[3] and [5] respectively)
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Conclusions

29

For this dataset, studied at ranks [3] and [5], 

• There is no correlation between eDCG and hDCG, in either un-normalized or scale-normalized form for a 

large, representative set of frequently run natural language queries.

• eDCG and hDCG cannot be used as proxies for one another.

• EDG appears to be a less stable / more sensitive metric than hDCG on a per query basis. 

• Wisdom of the crowd assumptions for eDCG do not appear to be always applicable.

• Neither eDCG or hDCG as a sole metric can characterize success or failure of search precision.

• Additional work is needed to understand how these results generalize to other query types, content 

types, engagement models (e.g. click models, or semantic relevance models) and relevance metrics.
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Next Steps:

• Short Term:
• Examine Boolean queries 
• Examine other content types
• Examine impact of changing the engagement model to one more closely attuned to SME rating 

behavior
• Extend to other metrics: P(k), ERR

• Longer Term: 
• Random Role, Competence, and Experience vs. Training Bias
• Explore more seldom asked query sets (but data sparsity issue)
• Better understand anomalous queries / results significantly impact the overall results
• Detail comparison testing on datasets where eDCG and hDCG trends strongly agree or disagree
• Lead Cow Experiment / SERP view impact for hDCG ratings bias

30
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Questions?

Thanks, and a tip of the helmet to the several folks who made this study possible 
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