

An approach to modelling implicit user feedback for optimizing e-commerce search

opensourceconnections.com



René Kriegler Haystack - The Search Relevance Conference Charlottesville, 27 April 2022



#### Who am I?



- Director E-commerce Search at OpenSource Connections
- Worked in search for 15 years
- Focus on e-commerce search, worked with some of Germany's top 10 online retailers
- Co-Founder/-Organiser of MICES Mix-Camp Ecommerce Search (https://mices.co)
- Lucene, Solr, Elasticsearch
- Maintainer of Querqy, co-initiator of Chorus



#### Buying, Having, Being - Aspects of search quality in e-commerce

| The What Having                                                                                                | The Purchase Buying                                                                                                                    | The Implied Being                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| The right type of item, the utility of the item                                                                | Readiness to spend money on<br>that item, making the purchase<br>decision for a concrete offer                                         | (Social) Implications on the self                                                                                                                 |
| Modelling in search<br>Core retrieval algorithm<br>matching the semantics of the<br>query ('smartphone 64 gb') | Modelling in search<br>Mostly explicit, numerical<br>factors that influence the buying<br>decision (price, delivery time,<br>reviews,) | Modelling in search<br>Implicit/latent decision factors<br>(consumer buys locally, prefers<br>brand X, colour green, open to try<br>out things, ) |
| Evaluation<br>Manual evaluation                                                                                | Evaluation<br>Implicit in user behaviour                                                                                               | Evaluation<br>Implicit in user behaviour                                                                                                          |

'Buying, Having, and Being' is taken from the subtitle of Michael R. Solomon. Consumer Behavior. Buying, Having, and Being. 2006.



#### Judgment modelling

Problem:

- How much will a consumer be satisfied by a product/offer as a result to a given search query? (Non-ecommerce search: How relevant is a given document for a given query?)

Approach:

- Derive search quality judgments from observed user behaviour



#### Aspects of judgment modelling

Model shall reflect these aspects:

- <u>Event probability</u>: a probability that tells us that how likely it is that a given product/offer/document is a good answer to the query (click rate, conversion rate)
- <u>Certainty</u>: How sure can we be about the event probability? (few observations, high variance -> uncertainty)
- <u>Context</u>: try to eliminate influence of position, device, grid size, ...







#### Let's get started: CTR as probability

$$P(C=1) = \rho$$

Inspired by Chuklin et al. Click Models for Web Search 2015

$$P(C_{qd} = 1) = ctr_{qd} = \frac{c_{qd}}{v_{qd}}$$

C: 1 if clicked, 0 if not

 $\mathbf{c}_{\mathbf{qd}}$ : observed clicks for query-document pair qd

 $v_{\rm qd}$ : tracked views for query-document pair qd



#### CTR as probability

| $\operatorname{clicks}$ | views | $\operatorname{ctr}$ |    |       |
|-------------------------|-------|----------------------|----|-------|
| 20                      | 100   | 0.20                 |    |       |
| 0                       | 100   | 0.00                 |    | 12    |
| 0                       | 1     | 0.00                 | 12 | } : { |
| 1                       | 1     | 1.00                 | :  | 10    |
| 99                      | 100   | 0.99                 |    | } {   |



#### CTR as probability

| $\operatorname{clicks}$ | views | $\operatorname{ctr}$ |   |
|-------------------------|-------|----------------------|---|
| 20                      | 100   | 0.20                 |   |
| 0                       | 100   | 0.00                 |   |
| 0                       | 1     | 0.00                 | ι |
| 1                       | 1     | 1.00                 | ſ |
| 99                      | 100   | 0.99                 |   |

#### Uncertainty! We would expect the ctr to change with the next event that we collect!

?



Model an <u>expected probability</u> as a function of parameters *alpha* and *beta*...

$$E[ctr] = \overline{ctr} = \frac{1}{N} \sum_{n=1}^{N} ctr_{qd_n}$$

$$E[ctr] = \frac{\alpha}{\alpha + \beta}$$



Model an <u>expected probability</u> as a function of parameters *alpha* and *beta*...

... and update this with the observed clicks and views

$$E[ctr] = \frac{\alpha}{\alpha + \beta}$$

$$y = \frac{\alpha + c_{qd}}{\alpha + \beta + v_{qd}}$$



E[ctr]=0.1 | alpha=1, beta=9

| $\operatorname{clicks}$ | views | $\operatorname{ctr}$ | У    |
|-------------------------|-------|----------------------|------|
| 20                      | 100   | 0.20                 | 0.19 |
| 0                       | 100   | 0.00                 | 0.01 |
| 0                       | 1     | 0.00                 | 0.09 |
| 1                       | 1     | 1.00                 | 0.18 |
| 99                      | 100   | 0.99                 | 0.91 |

$$y = \frac{\alpha + c_{qd}}{\alpha + \beta + v_{qd}}$$



E[ctr]=0.1 | alpha=1, beta=9

| $\operatorname{clicks}$ | views | $\operatorname{ctr}$ | у    |
|-------------------------|-------|----------------------|------|
| 20                      | 100   | 0.20                 | 0.19 |
| 0                       | 100   | 0.00                 | 0.01 |
| 0                       | 1     | 0.00                 | 0.09 |
| 1                       | 1     | 1.00                 | 0.18 |
| 99                      | 100   | 0.99                 | 0.91 |

Shrinkage towards the expected value!

fewer views:

- => greater uncertainty
- => greater shrinkage
- => the more we rely on the expected value



#### Visual recap



www.opensourceconnections.com



# How can we find good values for alpha and beta?

<u>vww.opensourceconnections.com</u>



#### Shrinkage vs. choice of alpha and beta

$$y = \frac{\alpha + c_{qd}}{\alpha + \beta + v_{qd}}$$

The greater alpha and beta, the greater the shrinkage => we can model shrinkage together with E[ctr] by just using alpha and beta

| clicks | views | $\operatorname{ctr}$ | $lpha{=}0.01{,}\beta{=}0.09$ | $\alpha {=} 1{,}\beta {=} 9$ | $\alpha = 100, \beta = 900$ |
|--------|-------|----------------------|------------------------------|------------------------------|-----------------------------|
| 20     | 100   | 0.20                 | 0.20                         | 0.19                         | 0.11                        |
| 0      | 100   | 0.00                 | 0.00                         | 0.01                         | 0.09                        |
| 0      | 1     | 0.00                 | 0.01                         | 0.09                         | 0.10                        |
| 1      | 1     | 1.00                 | 0.92                         | 0.18                         | 0.10                        |
| 99     | 100   | 0.99                 | 0.99                         | 0.91                         | 0.18                        |



#### Beta Distribution: parameters alpha and beta



Expected value of Beta(alpha,beta):

$$E[ctr] = rac{lpha}{lpha + eta}$$

https://en.wikipedia.org/wiki/Beta distribution



#### Beta distribution: estimating alpha and beta

$$\begin{split} \alpha &= \overline{ctr} \cdot (\alpha + \beta) \\ \beta &= (1 - \overline{ctr}) \cdot (\alpha + \beta) \\ \alpha + \beta &= \frac{\overline{ctr} \cdot (1 - \overline{ctr})}{s^2} - 1 \\ \text{Great intuition: (alpha + beta) ~ 1/s^2} \end{split}$$

Estimation based on sample mean (CTR) and varian s<sup>2</sup>

$$\text{if } \overline{ctr} \cdot (1 - \overline{ctr}) > s^2$$

lower variance ~ greater (alpha+beta)

Intuition: the greater certainty (via variance), the greater the shrinkage, the more we trust our expected ctr value, the more views/observations we need to diverge from it

alpha ~ probability of success, beta ~ probability of failure

We can write Beta(mean, variance) instead of Beta(alpha, beta)

www.opensourceconnections.com



#### Welcome to Bayesian Modelling



www.opensourceconnections.com



We can solve click probability and certainty, but...

## How can we eliminate position bias and other contexts from our model?



#### **Context: dealing with position bias**

**COEC** - Clicks over expected clicks

$$\frac{\sum_{r=1}^{N} c_{qd_r}}{\sum_{r=1}^{N} \overline{ctr}_r \cdot v_{qd_r}}$$

r: rank at which clicks and views were observed

$$rac{ctr_{qd_r}}{\overline{ctr}_r}$$

Same as above if query-doc pair was only observed at a single rank



#### **Position bias: COEC**





#### **Context: dealing with position bias**

COEC - Clicks over expected clicks



Same as above if query-doc pair was only observed at a single rank



#### Position bias: COEC after shrinkage





#### Position bias: COEC after shrinkage

Normalise by expected ctr for a given rank => great intuition!

We can combine COEC with a beta prior (shrinkage) to deal with 'certainty'. => We still need to see how we can deal with documents that occur at more than one position

BUT: COEC not only cancels out position bias but als the impact of the ranking that was applied the search engine when we collected our observations => we'll deal with this!



#### Position bias and impact of ranking





#### Expected value of the per-rank means





#### **Beta distribution of expected mean CTRs**





#### Multi-level modelling: 1) expected mean CTR





#### Multi-level modelling: 2) posterior CTR





#### **Multi-level modelling**





#### Partial pooling / hierarchical model



Partial pooling: each rank has its prior parameters  $(crr_r, s_r^2)$  - like in the unpooled approach. Now we assume a beta distribution of these priors with parameters  $\mu$  (mean) and  $\sigma^2$  (variance)



#### Partial pooling / hierarchical Bayesian model



Prior at rank r: Beta( $\theta_r$ , $\tau_r^2$ ) remember that we can calculate ( $\theta_r$ , $\tau_r^2$ ) -> ( $\alpha_r$ , $\beta_r$ ) www.opensourceconnections.com Weighted average of the pooled mean  $\mu$  and the rank-specific mean ctr

Using variance as weight! - If the ctr varies a lot at rank r - the pooled mean becomes more important

Keeps global relevance information

Models position bias

Estimation of  $\mu$  and  $\sigma^2$ :

- bootstrapping
- samples weighted by views at r
- Gelman et al.: use 99th percentile variance



#### **Hierarchical Bayesian model**



<u>Prior</u> at rank r: Beta( $\theta_r, \tau_r^2$ ) remember that we can calculate ( $\theta_r, \tau_r^2$ ) -> ( $\alpha_r, \beta_r$ )

#### **Posterior**

$$P(C_{qd_r} = 1|D) = \frac{\alpha_r + c_{qd_r}}{\alpha_r + \beta_r + \upsilon_{qd_r}}$$
$$Judgment_{qd} = \frac{P(C_{qd_r} = 1|D)}{\theta_r}$$



#### Aggregating across ranks

$$w_{qd_r} = rac{v_{qd_r}}{v_{qd}} \cdot rac{1}{s^2_r}$$

$$\theta_{qd} = \frac{\frac{1}{\sigma^2} \cdot \mu + \sum_{r=1}^N w_{qd_r} \overline{ctr}_r}{\frac{1}{\sigma^2} + \sum_{r=1}^N w_{qd_r}}$$

$$\tau^{2}_{qd} = \frac{1}{\frac{1}{\sigma^{2}} + \sum_{r=1}^{N} w_{qd_{r}}}$$

If a query-doc pair was observed at multiple ranks, use the views-weighted rank-specific parameters

Do not attempt to aggregate the posteriors instead of the priors (it took me 1.5 years to figure this out ;-) ) -> think: shrinkage per rank

Posterior:

$$P(C_{qd} = 1|D) = \frac{\alpha_{qd} + c_{qd}}{\alpha_{qd} + \beta_{qd} + v_{qd}}$$



#### From ranks to contexts

User do not (always) scan results sequentially or just stop at a good result



cp=ctr, data taken from 5-per-row grid layout site



#### From ranks to contexts

- Do not assume any relationship between ranks results are not processed in a known sequence
- Rank r becomes Context j



results-shown-on-page=9, has-marketing-label=false

www.opensourceconnections.com



#### Using contexts

$$w_{qd_j} = rac{v_{qd_j}}{v_{qd}} \cdot rac{1}{s^2_{\ j}}$$

Simply replace rank r with context j

Note that we don't assume an order in which the user would scan the results! (Think of grid layout in e-commerce)

If you don't have samples to calculate a prior for a given context, you can fall back to using just ( $\mu$ ,  $\sigma^2$ )

<u>Posterior</u>

$$P(C_{qd} = 1|D) = \frac{\alpha_{qd} + c_{qd}}{\alpha_{qd} + \beta_{qd} + v_{qd}}$$

$$Judgment_{qd} = \frac{P(C_{qd}=1|D)}{\theta_{qd}}$$

$$\theta_{qd} = \frac{\frac{1}{\sigma^2} \cdot \mu + \sum_{j=1}^N w_{qd_j} \overline{ctr}_j}{\frac{1}{\sigma^2} + \sum_{j=1}^N w_{qd_j}}$$

$$\tau^{2}_{qd} = \frac{1}{\frac{1}{\frac{1}{\sigma^{2}} + \sum_{j=1}^{N} w_{qd_{j}}}}$$



#### **Combining events**

Calculate judgments using separate hierarchical Bayesian Models, multiply judgments, you may want to weight event types

$$Judgment_{qd} = \frac{P(C_{qd}=1|D)}{\theta_{clicks_{qd}}} \frac{w_1}{\theta_{orders_{qd}}} \frac{P(O_{qd}=1|D)}{\theta_{orders_{qd}}} \frac{w_2}{\theta_{orders_{qd}}}$$



### Thank you!

René Kriegler rkriegler@o19s.com

OpenSource Connections <a href="https://o19s.com">https://o19s.com</a>

For more e-commerce search fun: Join us! - <u>https://o19s.com/about-us/careers/</u>

A special thanks to Maximilian Kusterer who introduced me to the idea of using a beta prior.