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• Using Neural Networks 
for the ranking task

• NNs are super flexible
• Allow the use of raw text 

data (e.g. user query and 
product descriptions)

• Product search has some 
peculiarities:

• Several feedback 
signals (clicks, 
purchases, a2b)

• Several important KPIs
• à Multi-task learning



Neural Ranking

Why use Neural Ranking?

Which architectures are used?



Motivation for Neural Ranking

Addresses issues of exact term matching 
models like BM25 
• Can overcome the lexical gap

• “ps5” vs. “playstation 5”
• Learns synonyms

• “couch” vs. “sofa”
• Can handle common spelling errors

Relevant product

query



Semantic Matching
On the example of the DSSM (Huang (2013))

𝑞
e.g. „ps5“

𝑑!
e.g. „Sony Playstation 5“ 
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Some Intermediate Results
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Semantic Matching
Limitations

• Semantic Matching is not equal to 
relevance matching

• Especially in E-Commerce there are 
often many perfect semantic matches to 
a query

• Which one is the most relevant 
depends on other factors

• à Semantic matching necessary but 
NOT sufficient condition for relevance 
matching
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Input Space
Combining traditional LTR features with raw text matching
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Ranking Model
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What is position bias?

How can we deal with it?

Estimating & Isolating
Position Bias



Position Bias
The curse of low-ranked products

• Higher ranked products get more attention than lower-ranked ones
• Naively training on click data will not learn the product relevance
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Position Bias
The curse of low-ranked products

• Higher ranked documents get more attention than lower-ranked ones
• Naively training on click data will not learn the product relevance

𝒅𝟏

𝒅𝟐

𝒅𝟑

𝒅𝟒

𝒅𝟓

Current approaches:
- Inverse Propensity Scoring

- Requires the examination probability to be known
- EM algorithm

- Does not yield a ranking function applicable to new (q,d)-pairs



Offline Training Inference

Query Document Dense Features Bias Features

Relevance
Model

Bias 
Model

𝑠β

+ Relevance ScoreBias Score

.𝑦 Click Probability

Query Document Dense Features 

Relevance
Model

𝑠 Ranking Score

Sort

Our „JoE“ approach
Jointly Estimating Relevance and Position Bias



Mean also different position biases?
Different Layouts in E-Commerce



What is special about product search?

How can we account for it?

Multi-Task Learning
In Product Search



• Customers have different 
intents (e.g. browsing and 
shopping)

• We want to serve these
intents and optimise
different KPIs

• CTR, CvR, GMV
• We can track the whole

funnel
• Clicks, Add2Baskets, 

Purchases

SERP

Product Detail 
Page

Basket
(Wishlist)

Order
€

A2B-Rate
PDP to Basket

CvR List
List to
Order

CvR PDP
PDP to
Order

CTR



The final Model
„Unbiased Multi-task Ranking Model“ !𝑌!
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The final Model
„Unbiased Multi-task Ranking Model“
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Choose 𝛼 so as to optimize

your online metrics



1

0

1

1

𝑌&'(&)

1

0

0

0

𝑌*+,-+

0

0

0

0

𝑌./'

?
Parameter Learning

!𝑌!

Bias 
Model

β

+Bias Score

+

M
HSA

𝑆&

FC: ℝ$×+ → ℝ$×(!"#$%

× 𝐿./

Feature embeddings Context embeddings

LayerNormalization(MHSA + 𝑋)

Order TowerClick Tower

𝑆-

Relevance Scores

Shared bottom layer

Input LayerBias Features

!𝑌"

PLAYSTATION
Playstation 5



- This is in particular a multi-label classification problem (each example (SERP) can 
have clicks on multiple items or none at all)

- In multilabel classification, we typically use sigmoid cross entropy (CE) loss

- BUT: sigmoid CE does not necessarily approximate ranking metrics well

- Bruch et al. (from Google research) show „that softmax cross entropy is a 
bound on Mean Reciprocal Rank (MRR) as well as NDCG when working with
binary ground-truth labels“

- Another problem: sum over softmax equals to one, but sum over labels unlikely to
sum to one!

- Normalize labels by their sum

Learning contd.
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What did we observe offline?

Were we able to improve online?

Results



Feature Importances
Order taskClick task
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Thanks for
your attention

Any questions?

…and by the way: we are hiring! 

(https://www.otto.de/jobs/jobsuche/search/)


