
Lowering the entry threshold for 
Neural Vector Search by applying 
Similarity Learning
Kacper Łukawski
Developer Advocate
Qdrant



Good old times: Deep Learning for classification



A classification dataset consists of examples and corresponding labels.

Flower Animal 

Flower 

Flower 

Animal 

Animal 



Reminder: how 
does the neural 
network work?
At each consecutive network layer, our 

input data is represented by a vector of the 

dimensionality determined by the layer size 

(number of neurons). Each of the vectors 

might be thought of as some kind of 

representation of the input, so called 

encoding or embedding.



What encodings 
may remind us 
about?

Berlin, [52.520008, 13.404954]



Neural embeddings

● They represent input data in N-dimensional latent space

● Two different embeddings should be close to each other if they 
represent a similar input object

● The distance between embeddings might be calculated in various ways 

(quite commonly with cosine or euclidean distance)



Neural embeddings: office emails

Hope this helps Just stop bothering me

[0.1, 0.32, 0.4, 0.41, 0.9, 0.5, 0.4] [0.09, 0.31, 0.41, 0.39, 0.89, 0.51, 0.39]



Neural embeddings: office emails

Thanks in advance I'm already thanking you for doing 
me this favor, even though you 
haven't yet agreed to it. Therefore, 
you must do it.

[0.71, 0.62, 0.1, 0.23, 0.8, 0.39, 0.9] [0.71, 0.6, 0.11, 0.24, 0.78, 0.36, 0.91]



Similarity Learning



Similarity Learning: 
network structure

If we have a pretrained network 
trained for classification, we can 
simply remove the last softmax-like 
layer and take the intermediate 
state as a representation of our 
data.



Similarity Learning: pitfalls

● Pretrained models rarely provide great embeddings out of the box.

● If the original model was trained i.e. on ecommerce fashion data, then it 

may struggle with recognizing tumours on medical images.

● The publicly available models, like BERT, are trained on datasets like 

Wikipedia, so may lack some domain specific concepts. 

● Training the network from scratch is also time and cost intensive.



Similarity Learning: fine-tuning



Similarity Learning: fine-tuning

Freezing the 

parameters of the 

neural encoder is a 

common strategy to 

avoid fine-tuning the 

whole network. That 

might cost a little 

fortune and takes quite 

a lot of time.



Pretrained models

In practice, the neural encoders have millions of parameters and we don't want to 

change them that much or even don't want to change them at all. That's why we put 

an additional layer on top of it and train the new head layers only to solve a particular 

problem. If the original encoder was trained on images to recognize a particular set of 

classes, then there is a high chance it will be also able to recognize some others after a 

little fine-tuning.



Pretrained models
If we freeze the neural encoder, the 

original part of the network becomes 

deterministic. But in the tutorials you 

would be still encouraged to load the 

images again and again in every single 

epoch. That means a huge overhead 

and slow training, even on a decent 

GPU.

Freezing the network



Similarity Learning: pitfalls

● In case of classification/regression, we know the target output

● With similarity learning we cannot provide the targets, as the perfect 

embeddings are unknown.



Similarity Learning: 
the process

We can fine-tune our existing 
network to work better in the new 
domain. The goal is to adjust the 
embeddings, not change them 
completely!



Similarity Learning: loss functions

Triplet loss is the most commonly known loss 

function used in similarity learning. It requires 

four elements:

1. Anchor

2. Positive example

3. Negative example

4. Margin

Source: https://towardsdatascience.com/triplet-loss-advanced-intro-49a07b7d8905

https://towardsdatascience.com/triplet-loss-advanced-intro-49a07b7d8905


Similarity Learning: pitfalls

Triplet Loss suffers from what is called 
vector collapsing, a common problem in 
similarity learning. A collapse of the vector 
space is the state when an encoder 
satisfies the loss function by simply 
mapping all input samples onto a single 
point (or a very small area) in the vector 
space without truly learning useful 
features for the task. 

Source: https://towardsdatascience.com/triplet-loss-advanced-intro-49a07b7d8905

https://towardsdatascience.com/triplet-loss-advanced-intro-49a07b7d8905


Similarity Learning: dataset structure (groups)



Similarity Learning: dataset structure (pairs)

Similarity: 0.7

Similarity: 0.53

Similarity: 0.0

Similarity: 0.82

Similarity: 0.39



Similarity Learning: pitfalls

● Even though the representation might not be that accurate, it still can 
capture some data regularities. Thus, we just want to slightly adjust 

the embeddings for the new domain.

● In other words, we need to avoid catastrophic forgetting.



Similarity Learning: skip connection head

If we just randomly initialize the 
head layer, it destroys the useful 
signal that is coming from the main 
encoder.

This may lead to several problems 
such as overfitting on the training 
dataset, being stuck in a local 
minimum, and unstable loss values 
among others, failing to effectively 
tune the parameters of the base 
model.

Gated layer has zeros at the very 
beginning, so literally starts from 
the original embeddings.



Quaterion
A PyTorch-Lightning compatible 
similarity learning framework

1. Built-in caching mechanism for neural 

embeddings (even up to 100x faster 

training).

2. The most popular similarity learning 

loss functions already built-in.

3. Skip-connection head layer available.

4. Vector collapse prevention in triplet 

loss.

5. And many more…

https://quaterion.qdrant.tech/ 

https://quaterion.qdrant.tech/


Moving to production



1. Anomaly detection

2. Recommendation systems

3. Classification, even the extreme case

4. Question answering

5. Semantic search
6. And much more…

Similarity Learning: use cases



Problems with using Similarity Learning at scale

● Since our network does no longer produce the probability distributions over 

classes, but some high-dimensional points in space, we cannot derive the 

predictions directly from them.

● Thus, we need to find the closest points in that space and need to do it 

efficiently. 

● A naive implementation of kNN solves this problem, but has linear complexity.

● There has been a lot going on in the area of Approximate Nearest Neighbours.



Vector Search in 
production

Qdrant is a vector search database using 
HNSW, one of the most promising 
algorithms for Approximate Nearest 
Neighbours.

● It’s written in Rust and offers great 
performance.

● Allows to interact by HTTP or gRPC 
protocols (also by official 
Python/Rust/Go clients).

● Runs both in single and multiple node 
setup.

● Incorporates category, 
geocoordinates and full-text filters to 
the vector search.



Questions?
Kacper Łukawski
Developer Advocate
Qdrant

https://www.linkedin.com/in/kacperlukawski/
https://twitter.com/LukawskiKacper
https://github.com/kacperlukawski

https://www.linkedin.com/in/kacperlukawski/
https://twitter.com/LukawskiKacper
https://github.com/kacperlukawski

