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Fine-tuning Embedding Models
Where and how to fine-tune models for dense retrieval
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Other

Code: https://github.com/jamescalam/train-sentence-transformers 

Ebook: https://www.pinecone.io/learn/nlp/ 

(we’re hiring)

https://github.com/jamescalam/train-sentence-transformers
https://www.pinecone.io/learn/nlp/
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Retrieve similar vectors quickly
and accurately

● Metadata
● Filtering
● Data management

Create meaningful vectors



Haystack EU 2022

There are 1000s of *pretrained* embedding models
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Why fine-tune anything?



Haystack EU 2022



Haystack EU 2022



Haystack EU 2022



Haystack EU 2022

We can all benefit from some fine-tuning
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Fine-tuning

pinecone/io/learn/nlp
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Comparing items

Fine-tuning embedding models revolves around contrast

A is similar to B

B is not similar to C

etc
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Labeled text-pairs
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Labeled text-pairs

+ Good performance
- Hard to find data

GLUE Sentence Textual Similarity benchmark (STSb)

Fine-tuning with labels
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It’s hard to find labeled data
Fine-tuning with labels
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Unlabeled text-pairs
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Unlabeled text pairs

Most datasets don’t contain specific (or any) labels

Stanford Natural Language Inference (SNLI)
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Multiple Negatives Ranking

All we need are (anchor, positive) pairs

Stanford Natural Language Inference (SNLI)

M. Henderson, et. al., Efficient Natural Language Response Suggestion for Smart Reply (2017), Google
N. Reimers, Losses - MultipleNegativesRanking, Sentence Transformers Docs

https://arxiv.org/abs/1705.00652
https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss
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We mix-and-match to get negatives

Mix different pairs
to create negatives

Multiple Negatives Ranking
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We mix-and-match to get negatives
Multiple Negatives Ranking

Source: pinecone.io/learn/genq/
              pinecone.io/learn/fine-tune-sentence-transformers-mnr/

https://docs.google.com/file/d/1F1fetfWD_o_93XWw05cK8azzxiY6UPLO/preview
https://www.pinecone.io/learn/genq/
https://www//fine-tune-sentence-transformers-mnr
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Then optimize
Multiple Negatives Ranking
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Then optimize
Multiple Negatives Ranking
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This works, but could be better

Randomly chosen pairs are often easy to distinguish

Multiple Negatives Ranking
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It’s like asking the model to spot the difference
Multiple Negatives Ranking
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Ideally, we want to challenge the model
Multiple Negatives Ranking
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Hard-negatives

Hard-negatives are items that the model struggles to distinguish as 
negative

Multiple Negatives Ranking

(Hard-negatives are not MNR-specific)
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Finding hard-negatives

1. In the dataset, if we’re lucky
2. Hard-negative mining

Multiple Negatives Ranking
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Hard-negative mining
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Hard-negative mining
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How many pairs are needed?
Multiple Negatives Ranking



Haystack EU 2022

Low resource scenarios



Haystack EU 2022

Low-resource

Low-resource == very little data

N. Reimers, I. Gurevych, Making Monolingual Sentence Embeddings 
Multilingual using Knowledge Distillation (2020), EMNLP

K. Wang, et al., TSDAE: Using Transformer-based Sequential 
Denoising Auto-Encoder for Unsupervised Sentence Embedding 
Learning (2021), EMNLP

https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2104.06979
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Translation pairs
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Translation pairs

“Parallel data” - text-pairs in a source language and a target language

+ It’s easy to find parallel data
- Requires existing use-case model in source language (teacher)
- Requires pretrained model for source and target language (student)

Multilingual Knowledge Distillation
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Multilingual knowledge distillation
With translation pairs we can use:
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Teacher and Student
Multilingual Knowledge Distillation
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Training Overview
Multilingual Knowledge Distillation

… for several epochs

Teacher model performance on source set == perf ceiling

Student should approach perf ceiling 
set by teacher on target set
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Only have text?



Haystack EU 2022

No pairs, just text?

What if we don’t have any text pairs?

K. Wang, et al., TSDAE: Using Transformer-based Sequential 
Denoising Auto-Encoder for Unsupervised Sentence Embedding 
Learning (2021), EMNLP

https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2104.06979
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Similar to MLM

Masked-Language Modeling (MLM) is the pretraining approach of models 
like BERT

TSDAE
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But at the sentence-level
TSDAE
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TSDAE

+ Easy to fine-tune
+ All we need is unstructured text data
- Only works for vanilla similarity (i.e. no QA)
- Performance cannot compare to previous methods
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Data Augmentation



Haystack EU 2022

Synthetic dataset augmentation?

If we have some data, or are willing to annotate a small 1-5K dataset

AugSBERT
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Data augmentation with transformers

Can we generate more pairs, and label them?

More pairs == random mix-and-match

Synthetic similarity scores?

AugSBERT
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Cross-encoders

If we have a small 1-5K dataset of labeled pairs, we can fine-tune a 
cross-encoder

AugSBERT

N. Thakur, et al., Augmented SBERT: Data Augmentation 
Method for Improving Bi-Encoders for Pairwise Sentence 

Scoring Tasks (2021), NAACL

pinecone.io/learn/data-augmentation/

https://arxiv.org/pdf/2010.08240.pdf
https://arxiv.org/pdf/2010.08240.pdf
https://arxiv.org/pdf/2010.08240.pdf
https://www.pinecone.io/learn/data-augmentation/
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Process outline
AugSBERT

N. Thakur, et al., Augmented SBERT: Data Augmentation 
Method for Improving Bi-Encoders for Pairwise Sentence 

Scoring Tasks (2021), NAACL

pinecone.io/learn/data-augmentation/

https://arxiv.org/pdf/2010.08240.pdf
https://arxiv.org/pdf/2010.08240.pdf
https://arxiv.org/pdf/2010.08240.pdf
https://www.pinecone.io/learn/data-augmentation/
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Considerations

+ Can start with small 1-5K dataset
+ Performance is reasonable
- Initial dataset must be labeled with similarity scores
- Must also fine-tune cross-encoder
- More complicated process

AugSBERT
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Asymmetric Search
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For asymmetric search

Search can be symmetric or asymmetric

Symmetric: query texts and passages texts are expected to be the same (size, form, etc)

Asymmetric: query texts are not equal size/form to passages texts, for example QA

GenQ and GPL

Asymmetric search, source: pinecone.io/learn/genq

https://www.pinecone.io/learn/genq/
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Question-answering
GenQ and GPL
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Training methods

MNR is good when we have many query-context pairs

But with low-resource domains?

- TSDAE cannot (only for vanilla similarity)
- AugSBERT format with scores not ideal

GenQ and GPL
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Query gen models

There are seq2seq transformer models

+ Given a “context” or passage, they can generate queries
- Needs pretrained seq2seq model or fine-tune on (query, context) 

pairs

GenQ and GPL
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Query generation
GenQ and GPL

BeIR/query-gen-msmarco-t5-large-v1
source: /learn/genq

https://huggingface.co/BeIR/query-gen-msmarco-t5-large-v1
https://www.pinecone.io/learn/genq/
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GenQ
GenQ and GPL

J. Ma, et al., Zero-shot Neural Passage Retrieval via 
Domain-targeted Synthetic Question Generation (2021), ACL

https://arxiv.org/abs/2004.14503
https://arxiv.org/abs/2004.14503
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GenQ

+ Only needs plain text data
+ Good performance if quality data
- Synthetic query generation are prone to poor quality
- Needs pretrained query gen model
- Whole process relies on high quality queries

GenQ and GPL
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Can we avoid bad performance from poor queries?
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Generative Pseudo Labeling (GPL)
GenQ and GPL

Adding pseudo-labeling reduces reliance on 
good query generation because the margin score 

the indicates relevance

Negative mining means better model 
performance

K. Wang, et al., GPL: Generative Pseudo Labeling for Unsupervised Domain 
Adaptation of Dense Retrieval, NAACL 2022

https://arxiv.org/abs/2112.07577
https://arxiv.org/abs/2112.07577
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GPL and negative mining

source: pinecone.io/learn/gpl

GenQ and GPL

https://www.pinecone.io/learn/gpl/
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GPL and pseudo labeling

source: pinecone.io/learn/gpl

GenQ and GPL

https://www.pinecone.io/learn/gpl/
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GPL and other techniques

source: pinecone.io/learn/gpl

https://www.pinecone.io/learn/gpl/
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How to fine-tune?

Pairs and labels? Cosine similarity loss

Just pairs? MNR

Not much of anything but translation pairs? Multilingual knowledge distillation

Small set of pairs and labels? AugSBERT

Asymmetric use-case, small dataset? GenQ

GenQ performing badly? GPL



Haystack EU 2022

Any Questions?

James

         YouTube.com/c/JamesBriggs

         discord.gg/c5QtDB9RAP

         twitter.com/jamescalam

Pinecone

     Vector database for millions or billions of records, 
free and paid services available

📖   Semantic Search ebook:

         pinecone.io/learn/nlp

   Careers: pinecone.io/careers

         twitter.com/pinecone

https://youtube.com/c/JamesBriggs
https://discord.gg/c5QtDB9RAP
https://twitter.com/jamescalam
https://pinecone.io/learn/nlp
https://pinecone.io/careers
https://twitter.com/pinecone

