## Building Retrieval Test Collections Ellen M. Voorhees



National Institute of Standards and Technology U.S. Department of Commerce

### **Cranfield Paradigm**



- Laboratory testing of retrieval systems first done in Cranfield II experiment (1963)
  - fixed document and query sets
  - evaluation based on relevance judgments
- Test collections
  - set of documents
  - set of questions
  - relevance judgments

### **Rationale for Cranfield**





Sufficient fidelity to real user tasks to be informative

General enough to be broadly applicable, feasible, relatively inexpensive

Lose realism to gain control over variables: more experimental power at lower cost

### **Cranfield Paradigm**



- Retrieval system response to a question is a ranked list of documents.
- The ideal output is a list with all relevant documents ranked before any non-relevant document.
- Easy to compute a variety of different evaluation measures from a ranked list once you know the set of relevant documents

### **Building Retrieval Test Collections**



How do we build **generalpurpose**, **reusable** test collections at **acceptable cost**?



#### **GENERAL PURPOSE**

Supports a wide range of measures and search scenarios

#### REUSABLE

Unbiased for systems not used to build the collection

#### **ACCEPTABLE COST**

Cost proportional to number of human relevance judgments needed

## Text REtrieval Conference (TREC)

# Workshop series that builds research infrastructure.



http://trec.nist.gov

pioneered use of "pooling" for building large collections

built > 150 test collections for dozens of search tasks

hundreds of participant teams world-wide

premier venue for determining research methodology

## Pooling

- For sufficiently large λ and diverse engines, depth-λ pools produce "essentially complete" judgments
- Unjudged documents are assumed to be not relevant when computing traditional evaluation measures such as average precision (AP)
- Resulting test collections have been found to be both fair and reusable.
  - 1) fair: no bias against systems used to construct collection
  - 2) reusable: fair to systems not used in collection construction



### Reusability of TREC-8 Ad Hoc Collection



### • TREC-8 ad hoc (circa 1999)

- (mostly) newswire collection with approx. 525K documents and 50 test `topics'
- pooled 71 TREC-8 submissions to depth 100 resulting in 86,830 judgments

#### • Five new 2021 runs

- two Anserini BM25 baselines
- three transformer-based runs
- Pooled 2021 runs plus previously unjudged TREC-8 runs to depth 50
  - 3,842 new judgments in pools ranging from 9—359 documents over 50 queries
  - 158 newly identified relevant documents
  - maximum new relevant in single run: 23

### **Reusability of TREC-8 Collection**



• Even individual topic  $\tau$ 's are stable

 smallest is 0.8852, and that was caused by many tied scores magnifying the apparent difference

 But... what about some even newer, fancier system?

- can't conclusively prove it is unaffected unless all documents judged
- but incredibly unlikely to be significantly unfairly scored
- to be scored unfairly, system needs to both find sufficiently many new relevant AND rank those new relevant before known relevants

### **Pooling Bias**

- But TREC-8 has relatively many judgments for modest corpus size
- Pooling assumes top  $\lambda$  documents is sufficient to reach past swell of topic-word relevant
- As document collection grows, a constant cut-off stays within swell
- Pools cannot be proportional to corpus size due to practical constraints
  - 1) sample runs differently to build unbiased pools
  - 2) new evaluation metrics that do not assume complete judgments



### **Alternate Construction Methods**

definition of strata

Goal is <u>not</u> to find the largest number of relevant documents possible. Goal is to find a <u>fair</u> set of relevant documents.



not fair, budget hard to control



## Deep Learning Track in TREC

- "Study IR evaluation in a large data regime"
- Coordinated with MS MARCO leaderboard
- TREC track started in 2019
  - build typical TREC test collections for both Documents and Passages corpora: relatively deep judgments for ~50 queries
  - MS MARCO data (hundreds of thousands of queries with ~1 judgment each) available for training
  - ndcg@10 primary measure



TREC

### Deep Learning Track

#### CAL<sup>®</sup> Selection



- Collections built using shallow pools followed by Continuous Active Learning process
  - judge depth-10 pools across submissions
  - given set of relevance judgments, CAL builds model of relevance and orders remaining collection by likelihood of relevance
  - loop on obtaining judgments and running CAL per topic until stopping condition met
    - stopping: few new relevant found or budget exhausted or too many total relevant (so reject)
- Resulted in acceptable collections in 2019 and 2020
  - same process failed to produce acceptable collection in 2021

## TREC Deep Learning 2021

|                  | Documents | Passages |
|------------------|-----------|----------|
| MS MARCO v. 1    | 3.2M      | 8.8      |
| MS MARCO v. 2    | 12M       | 138M     |
|                  |           |          |
| For 2021:        | Documents | Passages |
| # topics judged  | 57        | 57       |
| # topics in eval | 57        | 53       |
| min judgments    | 75        | 80       |
| max judgments    | 620       | 339      |
| mean judgments   | 229.1     | 204.3    |
| total judgments  | 13,058    | 10,828   |
| mean relevant    | 143.9     | 64.7     |

### • Corpora sizes significantly bigger in 2021

- document corpus 3.7 times as large
- passage corpus 15.6 times as large

### • Result is "too many" relevant documents

- collections are not reusable
- recall-based measures for track submissions are unreliable
- high-precision scores are saturated, so comparisons are unstable
- collection quality tests depend on finding relevant, so they are also less effective

### Deep Learning 2021 Scores



### Tests of Collection Quality



### Way Forward?



- Declare success!
- Arbitrarily narrow definition of relevant not a solution
  - all grades of relevant documents distributed throughout the rankings
  - `relevant' needs to be defined by the use case, not the collection characteristics, for collection to be a useful tool
  - all collection-building techniques rely on systems being able to rank relevant docs highly

#### • Use deeper measures

- addresses score saturation, but requires bigger budget
- Rank-Biased Precision (RBP) gives some control over depth plus bounds on uncertainty in score

### SOTA in Collection Building



#### NO SINGLE BEST TECHNIQUE

Quality of collection can depend on factors out of builder's control



#### BUDGET

Need to reserve a portion of overall budget for quality control

R

#### NUMBER OF <u>RELEVANT</u>

Largest factor affecting collection quality

●→◆ ↓ ■←●

#### **DYNAMIC METHODS**

Potential cost savings are often blunted by practicalities in real use

### So you want to build your own test collection...

#### • You sure?

- existing collections allow comparison to other methods while saving expense of construction
- seriously consider whether existing collection is sufficiently close abstraction

### • Okay, what is your goal?

- test alternatives to live system?
  - probably use A/B tests instead
- document current effectiveness?
  - sample current stream for corpus/queries
  - use metrics used in operations
- drive effectiveness improvements?
  - may want to oversample current challenges
  - high-precision measures unlikely to be sufficient for training



image: succo/Pixabay

### **Further Considerations**



image: succo/Pixabay

#### • Methods

- sufficient number of diverse runs for pooling?
- Minimum Test Collection (MTC) and variants for small set of known runs
- CAL or similar active learning schemes
- number queries vs. number judged per query

Budget

- need additional judgments for quality tests
  - novel run (or LOU) test
  - bootstrap stability
- likely to introduce bias when adding unjudged from a small set of new runs

### Ongoing Use

- beware overfitting to a single dataset
- beware repeated test statistical testing

### **Reprise: Rationale for Test Collections**





Sufficient fidelity to real user tasks to be informative *if task properly operationalized* 

General enough to be broadly applicable; feasibility and expense depend on (unknown) number of relevant

Lose realism to gain control over *some* variables and thus more power; *appropriateness of alternatives context dependent*