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About Discovery Experience at Shopify

● Search and 
recommendations for 
millions of merchants

● Empowering 
merchants by giving 
them state of the art 
search and discovery 
tooling

● Deepening 
relationships between 
merchants and their 
buyers



Shoutouts and Citations

● Josh Devins (of Elastic) work with MS Marco using Bayesian optimization 
○ https://www.elastic.co/blog/improving-search-relevance-with-data-driven-query-optimization

● Distil.pub’s great Bayesian Optimization article - https://distill.pub/2020/bayesian-optimization/

● Live coding Bayesian Optimization from Scratch - https://www.twitch.tv/manningpublications/video/1237632681

NB - https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

https://www.elastic.co/blog/improving-search-relevance-with-data-driven-query-optimization
https://distill.pub/2020/bayesian-optimization/
https://www.twitch.tv/manningpublications/video/1237632681
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb


Motivation

● Jump to LTR with crazy plugin built by mad scientist and lots of infra!!?!?

● Just use out of the box Elasticsearch with optimized query and index 

features?

OR



Let’s bake a cake
Ingredient Quantity??

Flour

Baking Powder

Milk

Sugar

Eggs

Time
Combine 
Ingredients

Bake N 
minutes

Taste and Test

Update Ingred. 
Quantities



Let’s not do this



One option - grid search 

Ingredient Quantity Range Increments

Flour 8 oz – 3 cups 1 oz

Baking 
Powder

1 tsp - 8 tsp 1 tsp

Milk 8 oz - 3 cups 1 oz

Sugar 1 tsp - 8 tsp 1 tsp

Eggs 1 egg - 4 eggs 1 egg

Time 10 min. - 25 min. 1 min.

Combine 
Ingredients

Bake N 
minutes

Taste and Test

Update Ingred. 
Quantities

(Increment 
flour 1 oz)

(Try every combination of ingredients)



Problem - baking time consuming

Ingredient Quantity Range Increments

Flour 8 oz – 24 oz 1 oz

Baking 
Powder

0 tsp - 8 tsp 1 tsp

Milk 8 oz - 24 oz 1 oz

Sugar 0 tsp - 8 tsp 1 tsp

Eggs 0 egg - 4 eggs 1 egg

Time 10 min. - 25 min. 1 min.

Combine 
Ingredients

Bake N minutes

Taste and Test

Update Ingred. 
Quantities

(Increment 
flour 1 oz)



Problem - baking time consuming

Ingredient Quantity Range Increments Combinations

Flour 8 oz – 24 oz 1 oz 16

Baking 
Powder

0 tsp - 8 tsp 1 tsp 9

Milk 8 oz - 24 oz 1 oz 16

Sugar 0 tsp - 8 tsp 1 tsp 9

Eggs 0 egg - 4 eggs 1 egg 5

Time 10 min. - 25 min. 1 min. 15

To find best cake, must Try:

16 * 9 * 16 * 9 * 5 * 15 = 

1,555,200!!!

~ 31 million minutes to 
try every combination

~ 60 years of baking



Search Relevance optimization like baking

Ingredient
Boost 
(or other param)

Quantity Range Increments

Title 0…20 1

Body 0...20 1

Title k1 0…2 0.1

Title b 0…2 0.1

title
min-should-match

0%-100% 10%

…

Create 
queries

Search 
1000 
Queries

Evaluate 
Relevance
 (ie NDCG, etc)

Update Ingred. 
Quantities

(Increment 
title boost 
0.1)

(Expensive to try 1000s of queries with one set of boosts)



Grid search also not ideal…

Ingredient
Boost 
(or other param)

Quantity Range Increments Combinations

Title 0…20 1 21

Body 0...20 1 21

Title k1 0…2 0.1 21

Title b 0…2 0.1 21

title
min-should-match

0%-100% 10% 11

…

To find best cake, must Try:

21 * 21 * 21 * 21 * 21 * 11 = 

2,139,291 params!!!

One run = 1 min…

2,139,291 minutes

~ 4 years of compute



Intuition, what if we tracked good / bad combos?

Boost 
(or other param)

Quantity

Title 15

Body 5

Title k1 1.2

Title b 1

title
min-should-match

25%

…

This observation seems pretty good!
Mean NDCG = 0.75

Intuition:

NEARBY PARAMS ALSO LIKELY GOOD
Mean NDCG ~ 0.75

Boost 
(or other param)

Updated Quantity

Title 15 + 1

Body 5 - 1

Title k1 1.2 + 0.1

Title b 1

title
min-should-match

25%

…



Next – try nearby or distant observation?
EXPLOIT

Nearby may be a little bit better?
(but only incrementally)
Mean NDCG > 0.75?

Boost 
(or other param)

Updated Quantity

Title 15 + 1

Body 5 - 1

Title k1 1.2 + 0.1

Title b 1

title
min-should-match

25%

…

EXPLORE:

Farther away may gain more knowledge?
(but with greater downside risk)
Mean NDCG ~ 0.9??

Boost 
(or other param)

Updated Quantity

Title 15 - 5

Body 5 + 4

Title k1 1.2 + 0.8

Title b 1 - 0.2

title
min-should-match

25%

…

VS



Gaussian Regression
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Amount of Flour

8 oz 9 oz 10oz 11oz 12oz 13oz 14oz 15oz 16oz 17oz 19oz18oz

1

2

3

Educated guess 
at cake quality

Uncertainty grows 
with distance from 
past attempts

Actual cakes 
baked

Models BOTH predictions AND a gaussian distribution of 
that prediction’s likelihood

Is there enough 
possible upside to 
exploring very far?

Or better to stay close 
to existing observation?



Gaussian Regression - Search
Av

g.
 D

C
G

Title Boost

1 2 3 4 5 6 7 8 9 10 1211

1

2

3

What’s the next ‘title 
boost’ we should try?



Practically speaking…
D

C
G

body_fuzziness

1 2 3 4 5 6 7 8 9 10 1211

1

2

3

{
  "query": {
      "bool": {
          "must": [
              {
                "bool": {
                    "should": [
                        {
                            "match": {
                                "title": {
                                    "query": "{{query_term}}",
                                    "boost": {{title_boost}},
                                }
                            }
                        },
                        {
                            "match": {
                                "body": {  
                                      "query": "{{query_term}}",
                                      "fuzziness": {{body_fuzziness}},
                                      "prefix_length": 4,
                                      "fuzzy_transpositions": true,  
                                     "boost": {{fuzzy_body_boost}}
                                 }
                            }
                        },

Params
~ baking 
ingredients

Using Mustache Templates
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html


Choose next candidate
1. Select N random points
2. Probe in Gaussian Process Regressor model
3. Score the best one to explore
4. Bake Cake Try out searches with new params!

M
ea

n 
D
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G

body_fuzziness

1 2 3 4 5 6 7 8 9 10 1211

1

2

3

{
  "query": {
      "bool": {
          "must": [
              {
                "bool": {
                    "should": [
                        {
                            "match": {
                                "title": {
                                    "query": "{{query_term}}",
                                    "boost": {{title_boost}},
                                }
                            }
                        },
                        {
                            "match": {
                                "body": {  
                                      "query": "{{query_term}}",
                                      "fuzziness": {{body_fuzziness}},
                                      "prefix_length": 4,
                                      "fuzzy_transpositions": true,  
                                     "boost": {{fuzzy_body_boost}}
                                 }
                            }
                        },

(we also use index-time params…) 



Training

from sklearn.gaussian_process import GaussianProcessRegressor
import pandas as pd

runs_so_far = pd.DataFrame(sorted_by_perf)

y_train = runs_so_far['mean_dcg']
x_train = runs_so_far[['title_boost','fuzzy_body_boost','body_boost']]

gpr = GaussianProcessRegressor()
gpr.fit(x_train.to_numpy(), y_train.to_numpy())

Open sourced demo in OpenSource Connection’s “Hello LTR” project
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb


Probability of Improvement
Score using the probability a selected point will yield any improvement 

Title 
Boost

Body 
Fuzziness

Body 
Boost

GPR
Pred. DCG

GPR
Std Dev

(Expectation - Max) / 
stddev

0 1 5 1.5 1.0 (1.5 - 2.1) / 1.0 = -0.6

10 3 1 2.3 0.2 (2.3 - 2.1) / 0.2 = 1.0

12 2 4 1.2 0.6 (1.2 - 2.1) / 0.6 = -1.5

Current Max Observation
Title Boost = 10, Body Fuzziness = 3, Body Boost = 2 
DCG = 2.1

Max Candidate 
Chosen



Numerator ~ ‘opportunity’
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb


Denominator - is this a sure thing?
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Moves the mass of the 
probability 
distribution above 
current max

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb


Theta - control explore vs exploit
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

High theta = Explore: completely ignore opportunity, choose areas of 
high std dev 

Low theta = Exploit: use a lot of signal from opportunity

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb


Probability of Improvement
Score using the probability a selected point will yield any improvement 

Title 
Boost

Body 
Fuzziness

Body 
Boost

GPR
Pred. DCG

GPR
Std Dev

(Expectation - Max - Theta) / 
stddev

0 1 5 1.5 1.0 (1.5 - 2.1 - 20 ) / 1.0 = -20.6

10 3 1 2.3 0.2 (2.3 - 2.1 - 20 ) / 0.2 = -99

12 2 4 1.2 0.6 (1.2 - 2.1 - 20) / 0.6 = -20.9

Current Max Observation
Title Boost = 10, Body Fuzziness = 3, Body Boost = 2 
DCG = 2.1; Theta = 20

Max Candidate 
Chosen



Even better - Expected Improvement

Not just whether an improvement will occur but how much 
improvement to expect!



Boogie - our offline experimentation framework

Analysis Optimization

Experiment

Turn qualitative problems 
into quantitative target

Try out different approaches 
to solve the problem

Find the optimal version of a 
solution

“Relevance bad” -> improve DCG on storefront 
judgments

“Improve in-network precision” -> reduce num 
results, but hold DCG steady

How to best improve DCG?

We know now title boost is good, but 
what value, specifically?



Example 
Walkthrough





Shop app



Shop app





Going back
old results for “sailor moon ring”



Going back
old results for “sailor moon ring”

“moon ring” “sailor moon”



Our setup (at the time)

phrase matching
stemming

minimum 
should match 

…



we could see plenty of good products lower in search results!



Right setup, wrong parameters

Parameter Value

Match Boost High?

Phrase Boost Medium?

Stemmed Match Boost Medium?

Stemmed Phrase Boost Low?



“OST x Sailor Moon - 
Warrior Silence Grave Ring”

“OST x Sailor Moon - 
Beautiful Warrior Moonlight Miss Ring”

“OST x Sailor Moon - 
Warrior Sailor Moon Garnet Ring”

“OST x Sailor Moon - 
Cutie Sailor Moon Road Ring”

new results for
“sailor moon ring”



Recipe for optimization



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

Training

“jeans”, “wallet”, 
“t-shirt”, “k pop”, …

Hold-out

“washi tape”, “notebook”, 
“jacket”, “airpods”, 
“shorts”, “candy”,

“sailor moon ring”, …



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

Query Product Grade

jeans original jeans 0.42

grey jeans 0.13

jean outfit 0.06

jean jacket 0.02

Goal: optimize DCG

judgments for 
the query 
“jeans”



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

Parameter

Match Boost

Phrase Boost

Stemmed Match Boost

Stemmed Phrase Boost



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

Parameter

Match Boost

Phrase Boost

Stemmed Match Boost

Stemmed Phrase Boost

Minimum Should Match

share parameters 
where possible!



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

✓ works for non-linear setups 
(example: multiplied scores)



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

5. Explore the best models



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

5. Explore the best models

6. Iterate if needed!
(training data, metric to optimize, parameter ranges, optimizer settings)



Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

5. Explore the best models

6. Iterate if needed!

✓ Applied each
relevance cycle



Experiment time!



Parameters

Query parameters

Index parameters



only focusing on 
product titles

Parameters



Parameters
BM25 parameters in 
their typical ranges

BM25
- b
- k



Parameters

Boosts ranging 
between 0.1 and 1.0

unstemmed
- match
- match_phrase



Parameters

Same idea, but for
stemmed product titles

stemmed
- match
- match_phrase



(BM25 detour)



Role of “b”



Role of “k”

no term frequencies



Role of “k”X



Back to the 
experiment



Results!

Parameter Value

b (BM25) High

k (BM25) High

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High



Results?

Parameter Value

b (BM25) High

k (BM25) High

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High



Results?



product titles provide critical information!

“OST x Sailor Moon - 
Beautiful Warrior Moonlight Miss Ring”



First lesson: optimizers are lazy

“shirt”



First lesson: optimizers are lazy

“shirt”

if there is a loophole, the 
optimizer will find it



First lesson: optimizers are lazy

(source: https://dragonflyai.co)



Attempt two
Forcing exploration around 
lower “b” values



Optimization



Optimization



If we were higher-dimensional beings



Measuring progress

DCG 
@ 
20

Batch Number



Measuring progress

Exploration

Exploitation
DCG 
@ 
20

Batch Number



Exploring results

Parameter Value

b (BM25) Low

k (BM25) Medium

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

“Best” model



Exploring results

Parameter Value

b (BM25) Low

k (BM25) Medium

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

Less emphasis
on the lengths of titles



Exploring results

Parameter Value

b (BM25) Low

k (BM25) Medium

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

Phrase matches have 
strong boosts



Second lesson: look at the distribution



Second lesson: look at the distribution



Summary of changes
Parameter Change Effect

b (BM25) High → Low Less penalization on document lengths

Stemmed Match Boost High → Low Stemmed matches come lower in search 
results. Still boosts recall

Stemmed Phrase Boost Low → High Doubling-down on high-precision phrases



BM25: before and after



Evaluation



Evaluation



Evaluation



Takeaways
1. Your search engine might have the right strategies



Takeaways
1. Your search engine might have the right strategies

✓ Sometimes all that’s needed is a re-balance of signals



Takeaways
1. Your search engine might have the right strategies

✓ Sometimes all that’s needed is a re-balance of signals

2. Parameter optimization is both a science and an art



Takeaways
1. Your search engine might have the right strategies

✓ Sometimes all that’s needed is a re-balance of signals

2. Parameter optimization is both a science and an art
✓ Evaluate on the right data
✓ Optimize the right metric
✓ Share parameters where possible
✓ Constrain parameters using your judgment
✓ Explore the distribution of good models



Future work
1. Better understanding and tuning the optimizer

2. Comparing to baselines like random grid search and LTR / LTB



Future work
1. Better understanding and tuning the optimizer

2. Comparing to baselines like random grid search and LTR / LTB

3. Lots more!

- The value of theta for controlling the level of exploration
- Enforcing randomness across parallel jobs (otherwise they perform similar explorations)
- The best way to initialize the optimization with random samples
- Which regression to use, which kernels to use



So when do you use LTR instead?

Pro: Arbitrary functional 
form of the features

Con: Static functional form 
(your Elasticsearch query)

Con: More infrastructure 
and (re)training

Pro: Simple infrastructure



We’re growing
shopify.com/careers

Our 3,000+ employees at our  annual Summit



Thank You!


