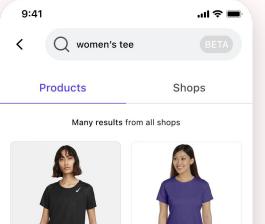


Bayesian Optimization at Shopify

Andy Toulis, Sr. Data Scientist @ Shopify Doug Turnbull, Relevance Eng @ Shopify

Discovery Experiences

About Discovery Experience at Shopify



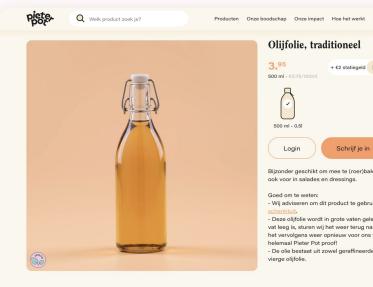
Magnolia tshirt

Merchology

\$30

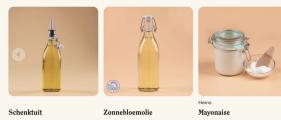
Women running tee MEC \$20

- Search and recommendations for millions of merchants
- Empowering ۲ merchants by giving them state of the art search and discovery tooling
- Deepening ۲ relationships between merchants and their buyers



Anderen bekeken ook

1 etuke . £2 95/etuk



500 ml + 60 25/100ml

410 ml = 60.48/100m

1.95

3.50 500 ml + 60.70

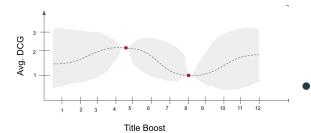
Balsamico aziin

Shoutouts and Citations

- Josh Devins (of Elastic) work with MS Marco using Bayesian optimization
 - <u>https://www.elastic.co/blog/improving-search-relevance-with-data-driven-query-optimization</u>
- Distil.pub's great Bayesian Optimization article <u>https://distill.pub/2020/bayesian-optimization/</u>
- Live coding Bayesian Optimization from Scratch <u>https://www.twitch.tv/manningpublications/video/1237632681</u>
 - NB <u>https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb</u>

Motivation

• Jump to LTR with crazy plugin built by mad scientist and lots of infra!!?!?

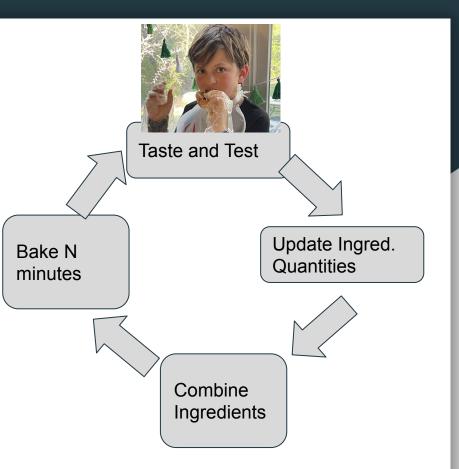


OR

• Just use out of the box Elasticsearch with optimized query and index features?

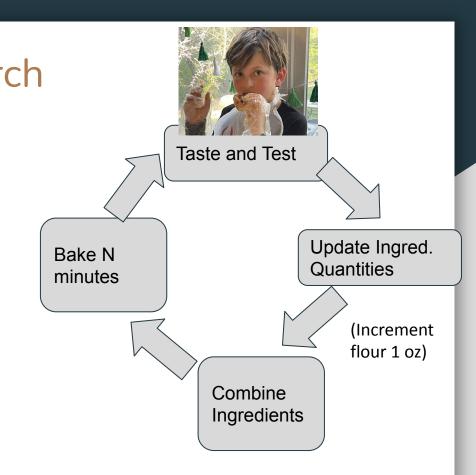
Let's bake a cake

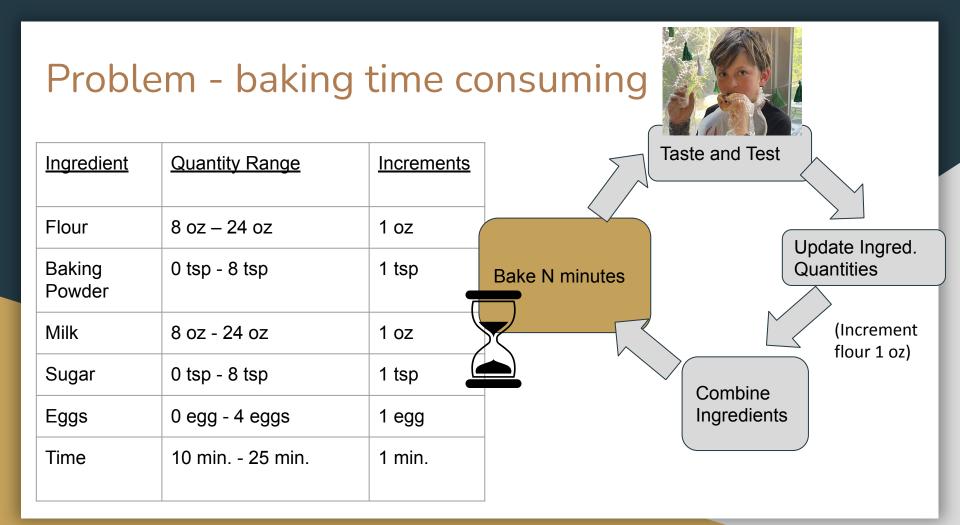
Ingredient	Quantity??
Flour	
Baking Powder	
Milk	
Sugar	
Eggs	
Time	



Let's not do this

One option - grid sear								
(Try every combination of ingredients)								
Ingredient	Quantity Range	Increments						
Flour	8 oz – 3 cups	1 oz						
Baking Powder	1 tsp - 8 tsp	1 tsp						
Milk	8 oz - 3 cups	1 oz						
Sugar	1 tsp - 8 tsp	1 tsp						
Eggs	1 egg - 4 eggs	1 egg						
Time	10 min 25 min.	1 min.						





Problem - baking time consuming

Ingredient	Quantity Range	Increments	Combinations
Flour	8 oz – 24 oz	1 oz	16
Baking Powder	0 tsp - 8 tsp	1 tsp	9
Milk	8 oz - 24 oz	1 oz	16
Sugar	0 tsp - 8 tsp	1 tsp	9
Eggs	0 egg - 4 eggs	1 egg	5
Time	10 min 25 min.	1 min.	15

To find best cake, must Try:

16 * 9 * 16 * 9 * 5 * 15 =

1,555,200!!!

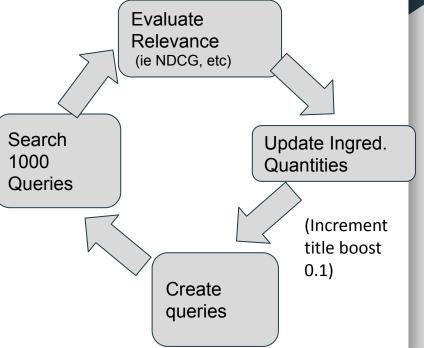
~ 31 million minutes to try every combination

~ 60 years of baking

Search Relevance optimization like baking

(Expensive to try 1000s of queries with one set of boosts)

Ingredient Boost (or other param)	Quantity Range	Increments	
Title	020	1	•
Body	020	1	
Title k1	02	0.1	
Title b	02	0.1	
title min-should-match	0%-100%	10%	



Grid search also not ideal...

Ingredient Boost (or other param)	Quantity Range	Increments	<u>Combinations</u>
Title	020	1	21
Body	020	1	21
Title k1	02	0.1	21
Title b	02	0.1	21
title min-should-match	0%-100%	10%	11

To find best cake, must Try:

21 * 21 * 21 * 21 * 21 * 11 =

2,139,291 params!!!

One run = 1 min...

2,139,291 minutes

~ 4 years of compute

Intuition, what if we tracked good / bad combos?

This observation seems pretty good!

Mean NDCG = 0.75

Boost (or other param)	<u>Quantity</u>
Title	15
Body	5
Title k1	1.2
Title b	1
title min-should-match	25%

Intuition:

NEARBY PARAMS ALSO LIKELY GOOD Mean NDCG ~ 0.75

Boost (or other param)	Updated Quantity
Title	15 + 1
Body	5 - 1
Title k1	1.2 + 0.1
Title b	1
title min-should-match	25%

Next – try *nearby* or *distant* observation?

VS

EXPLOIT

Nearby may be a little bit better? (but only incrementally) Mean NDCG > 0.75?

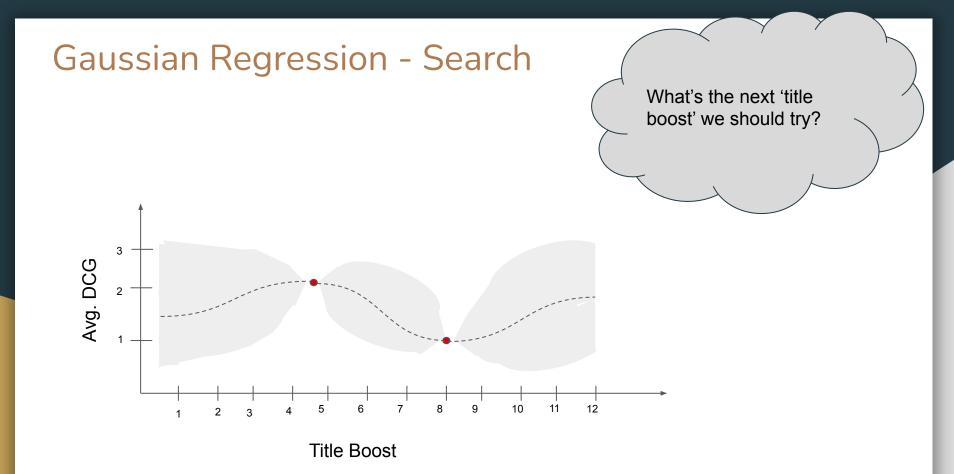
Boost (or other param)	Updated Quantity
Title	15 + 1
Body	5 - 1
Title k1	1.2 + 0.1
Title b	1
title min-should-match	25%

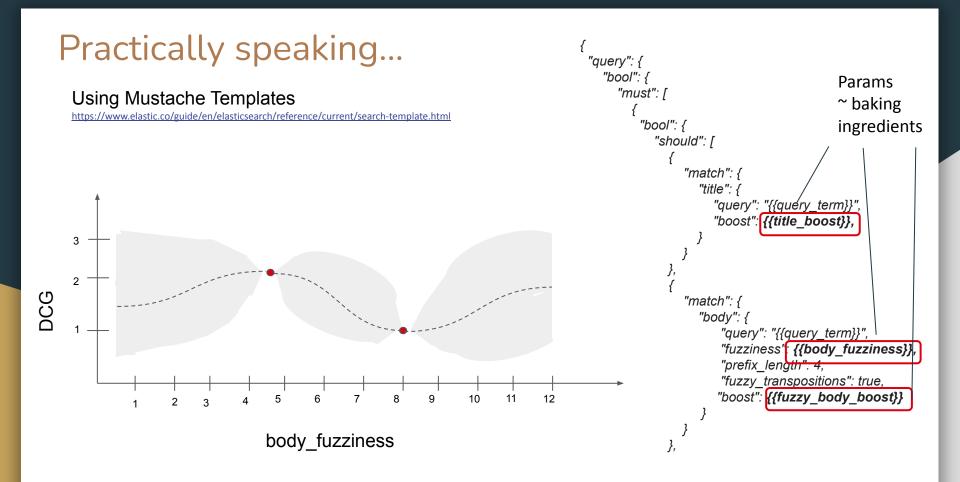
EXPLORE:

Farther away may gain more knowledge? (but with greater downside risk) **Mean NDCG ~ 0.9??**

Boost (or other param)	Updated Quantity
Title	15 - 5
Body	5 + 4
Title k1	1.2 + 0.8
Title b	1 - 0.2
title min-should-match	25%

Amount of Flour





Choose next candidate

Open sourced demo in OpenSource Connection's "Hello LTR" project https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.jpynb

from sklearn.gaussian_process import GaussianProcessRegressor
import pandas as pd

```
runs so far = pd.DataFrame(sorted by perf)
```

```
y_train = runs_so_far['mean_dcg']
x_train = runs_so_far[['title_boost', 'fuzzy_body_boost', 'body_boost']]
```

```
gpr = GaussianProcessRegressor()
gpr.fit(x_train.to_numpy(), y_train.to_numpy())
```

Probability of Improvement

Score using the probability a selected point will yield *any improvement*

<u>Current Max Observation</u> Title Boost = 10, Body Fuzziness = 3, Body Boost = 2

DCG = **2.1**

Title Boost	Body Fuzziness	Body Boost	GPR Pred. DCG	GPR Std Dev	(Expectation - Max) / stddev	
0	1	5	1.5	1.0	(1.5 - 2.1) / 1.0 = -0.6	
10	3	1	2.3	0.2	(2.3 - 2.1) / 0.2 = 1.0	Max Candidate Chosen
12	2	4	1.2	0.6	(1.2 - 2.1) / 0.6 = -1.5	

Numerator ~ 'opportunity'

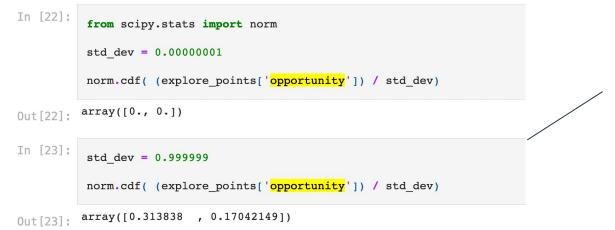
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

		xplore_points xplore_points		<pre>cunity'] = d</pre>	<pre>explore_points['prediction'] - best_cg</pre>	
Out[20]:		prediction	std_dev	opportunity		
	0	4.675000e-01	0.00001	-0.4850		
	1	4.522243e-142	1.00000	-0.9525		

Denominator - is this a sure thing?

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

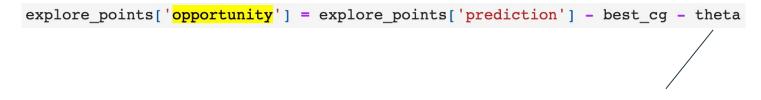
norm.cdf scales this between 0-1 to give us more of a probability.



Moves the mass of the probability distribution above current max

Theta - control explore vs exploit

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb



High theta = Explore: completely ignore opportunity, choose areas of high std dev

Low theta = Exploit: use a lot of signal from opportunity

Probability of Improvement

Score using the probability a selected point will yield *any improvement*

Current Max Observation

Title Boost = 10, Body Fuzziness = 3, Body Boost = 2

DCG = 2.1; Theta = 20

Title Boost	Body Fuzziness	Body Boost	GPR Pred. DCG	GPR Std Dev	(Expectation - Max - Theta) / stddev	
0	1	5	1.5	1.0	(1.5 - 2.1 - 20) / 1.0 = -20.6	Max Candidate Chosen
10	3	1	2.3	0.2	(2.3 - 2.1 - 20) / 0.2 = -99	
12	2	4	1.2	0.6	(1.2 - 2.1 - 20) / 0.6 = -20.9	

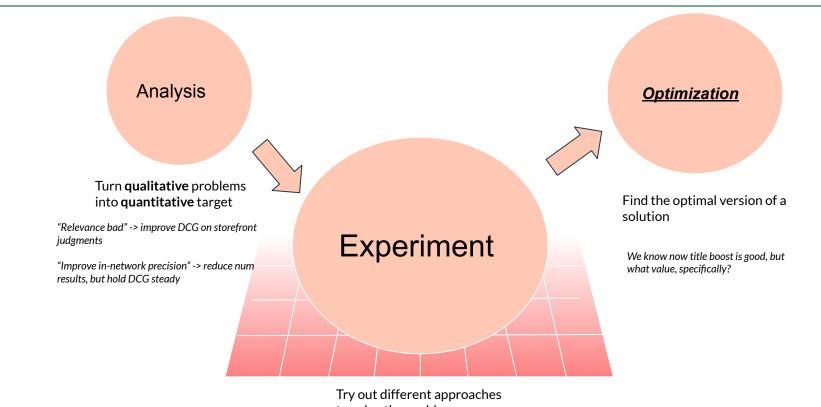
Even better - Expected Improvement

Not just *whether* an improvement will occur but *how much* improvement to expect!

$$EI(x) = egin{cases} (\mu_t(x) - f(x^+) - \epsilon) \Phi(Z) + \sigma_t(x) \phi(Z), & ext{if } \sigma_t(x) > 0 \ 0, & ext{if } \sigma_t(x) = 0 \end{cases}$$

$$Z=rac{\mu_t(x)-f(x^+)-\epsilon}{\sigma_t(x)}$$

Boogie - our offline experimentation framework



to solve the problem How to best improve DCG? Example Walkthrough

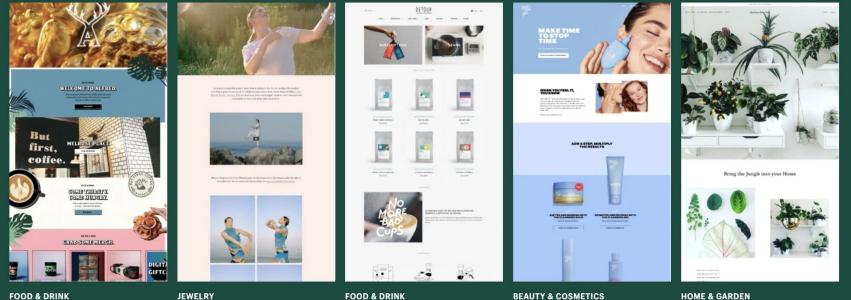
Bring your business online

Corey Moranis

Create an ecommerce website backed by powerful tools that help you find customers, drive sales, and manage your day-to-day.

Explore more examples \rightarrow

Miss Boon

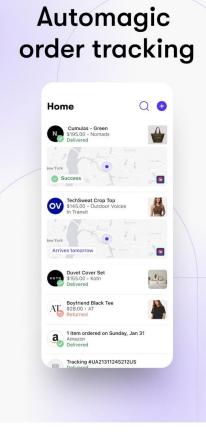


Then I Met You

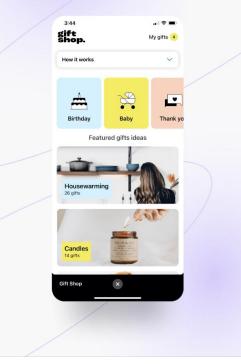
Detour Coffee

Alfred

Shop app

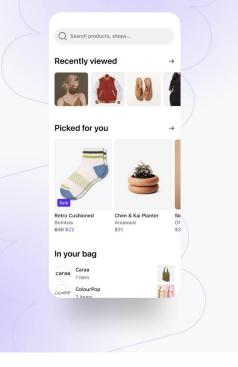


Send the perfect gift in seconds

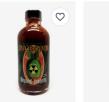


Shop app

Discover and follow brands



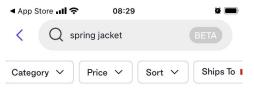
5930 results from all shops



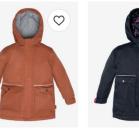
Chilly Chiles Da Bomb Beyond Insanity Crystal Hot Sauce CA\$16.99

 \heartsuit

CA\$6.99



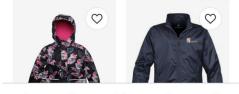
917 results from all shops

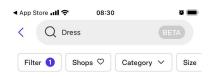


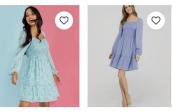
Deux par Deux Spring Jacket Brown CA\$69.00

Deux par Deux Spring Jacket Black CA\$69.00

O







Suzy Shier Printed Babydoll Dress CA\$49.00

Suzy Shier Babydoll Dress CA\$49.00

Going back

old results for "sailor moon ring"

Going back

old results for "sailor moon ring"

"sailor moon"

"moon ring"

Our setup (at the time)

phrase matching

stemming

...

minimum should match

we could see plenty of good products lower in search results!

Right setup, wrong parameters

Parameter	Value
Match Boost	High?
Phrase Boost	Medium?
Stemmed Match Boost	Medium?
Stemmed Phrase Boost	Low?

"OST x Sailor Moon -Warrior Silence Grave Ring"

"OST x Sailor Moon -Beautiful Warrior Moonlight Miss Ring"

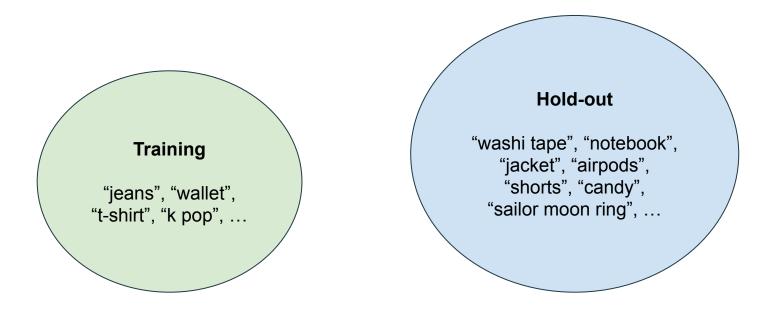
new results for "sailor moon ring"

"OST x Sailor Moon -Warrior Sailor Moon Garnet Ring"

"OST x Sailor Moon -Cutie Sailor Moon Road Ring"

1. Set up a **training** sample to optimize on, and a **hold-out** for evaluation

1. Set up a **training** sample to optimize on, and a **hold-out** for evaluation



1. Set up a **training** sample to optimize on, and a **hold-out** for evaluation

Query	Product	Grade			
jeans	original jeans	0.42			
	grey jeans	0.13			
	jean outfit	0.06			
	jean jacket	0.02			
Goal: optimize DCG					

judgments for the query "jeans"

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which **parameters** you will optimize

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which **parameters** you will optimize

Parameter
Match Boost
Phrase Boost
Stemmed Match Boost
Stemmed Phrase Boost

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which **parameters** you will optimize

Parameter
Match Boost
Phrase Boost
Stemmed Match Boost
Stemmed Phrase Boost
Minimum Should Match

share parameters where possible!

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which parameters you will optimize
- 3. Set reasonable **ranges** for parameters

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which parameters you will optimize
- 3. Set reasonable ranges for parameters
- 4. **Run the optimizer** on your training sample

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which parameters you will optimize
- 3. Set reasonable ranges for parameters
- 4. **Run the optimizer** on your training sample
 - works for non-linear setups (example: multiplied scores)

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which parameters you will optimize
- 3. Set reasonable ranges for parameters
- 4. Run the optimizer on your training sample
- 5. **Explore** the best models

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which parameters you will optimize
- 3. Set reasonable ranges for parameters
- 4. Run the optimizer on your training sample
- 5. Explore the best models

6. Iterate if needed!

(training data, metric to optimize, parameter ranges, optimizer settings)

Applied each relevance cycle

- 1. Set up a training sample to optimize on, and a hold-out for evaluation
- 2. Plan which parameters you will optimize
- 3. Set reasonable ranges for parameters
- 4. Run the optimizer on your training sample
- 5. Explore the best models
- 6. Iterate if needed!

Experiment time!

from boogie.optimize import Param params = [Param(name="title k1", param_type="index", param_min=0.2, param max=3.0, param_step=0.2, default=1.2), Param(name="title b", param type="index", param min=0.2, param max=1.0, param step=0.1, default=0.5), Param(name="match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="phrase_boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed match boost", param_type="query", param_min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed phrase boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0),

Index parameters

Query parameters

from boogie.optimize import Param params = [Param(name="title k1", param type="index", param min=0.2, param max=3.0, param step=0.2, default=1.2), Param(name="title b", param type="index", param min=0.2, param max=1.0, param step=0.1, default=0.5), Param(name="match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="phrase_boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed match boost", param_type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed phrase boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0),

only focusing on **product titles**

BM25 - b - k params = [Param(name="title k1", param_type="index", param_min=0.2, param_max=3.0, param_step=0.2, default=1.2), Param(name="title b", param_type="index", param min=0.2, param max=1.0, param step=0.1, default=0.5), Param(name="match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="phrase_boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed match boost", param_type="query", param_min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed phrase boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0),

from boogie.optimize import Param

BM25 parameters in their typical ranges

unstemmed

- match
- match_phrase

params = [
 Param(name="title_k1",
 param_type="index",
 param_min=0.2,
 param_max=3.0,
 param_step=0.2,
 default=1.2),
 Param(name="title_b",
 param_type="index",
 param_min=0.2,
 param_max=1.0,
 param_max=1.0,
 param_step=0.1,
 default=0.5),

from boogie.optimize import Param

Param(name="match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="phrase_boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed match boost", param_type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed phrase boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0),

Boosts ranging between 0.1 and 1.0

stemmed

- match
- match_phrase

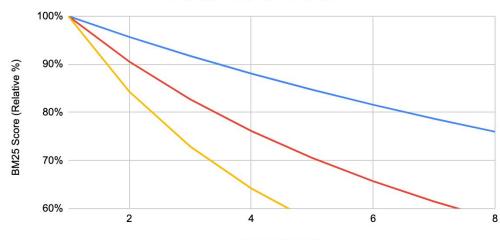
from boogie.optimize import Param params = [Param(name="title k1", param type="index", param min=0.2, param max=3.0, param step=0.2, default=1.2), Param(name="title b", param type="index", param min=0.2, param max=1.0, param step=0.1, default=0.5), Param(name="match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="phrase_boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed match boost", param_type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed phrase boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0),

Same idea, but for stemmed product titles

(BM25 detour)

Role of "b"

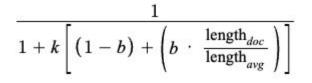
BM25 Penalization on Document Length (k=1.75, no TF)



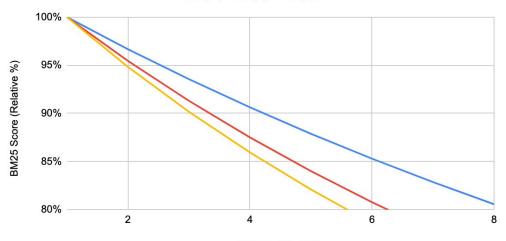
- b=0.25 - b=0.5 - b=0.75

Role of "k"

BM25 Penalization on Document Length (b=0.25, no TF)

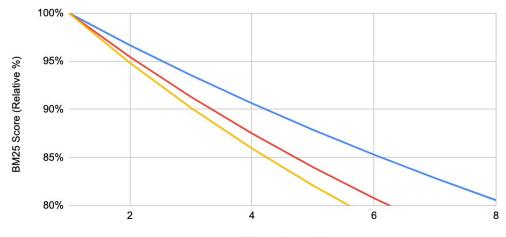


no term frequencies



— k=1 **—** k=2 **—** k=3

BM25 Penalization on Document Length (b=0.25, no TF)



— k=1 **—** k=2 **—** k=3

Back to the experiment

Results!

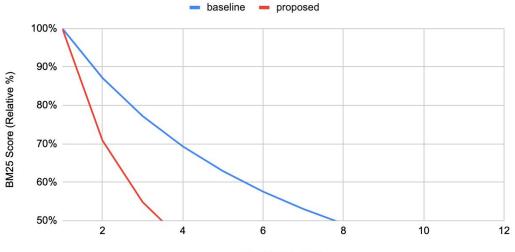
Parameter	Value
b (BM25)	High
k (BM25)	High
Match Boost	High
Phrase Boost	High
Stemmed Match Boost	Low
Stemmed Phrase Boost	High

Results?

Parameter	Value
b (BM25)	High
k (BM25)	High
Match Boost	High
Phrase Boost	High
Stemmed Match Boost	Low
Stemmed Phrase Boost	High

Results?

BM25 Penalization on Document Length (baseline vs proposed)



product titles provide critical information!

"OST x Sailor Moon -Beautiful Warrior Moonlight Miss Ring"

First lesson: optimizers are lazy

"shirt"

First lesson: optimizers are lazy

"shirt"

if there is a loophole, the optimizer will find it

First lesson: optimizers are lazy

(source: https://dragonflyai.co)

Attempt two

params = [Param(name="title_k1", param type="index", param min=0.2, param max=3.0, param step=0.1, default=1.2), Param(name="title b", param type="index", param min=0.10, param max=0.40, param step=0.05, default=0.2), Param(name="match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="phrase boost", param_type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed match boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0), Param(name="stemmed phrase boost", param type="query", param min=0.1, param max=1.0, param step=0.1, default=1.0),

from boogie.optimize import Param

Forcing exploration around lower "b" values

Optimization

Next explorations:

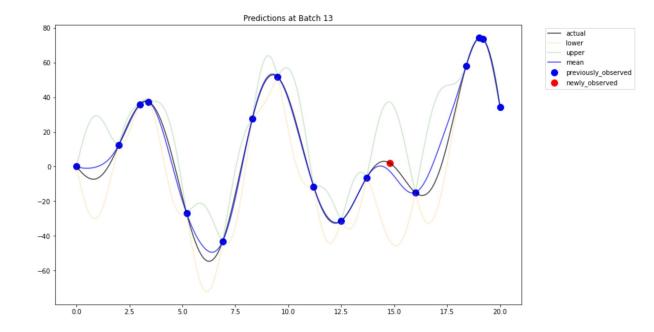
title_k1	title_b	match_boost	phrase_boost	stemmed_match_boost	stemmed_phrase_boost
2.8	0.2	1.0	0.2	0.1	1.0
2.8	0.2	1.0	0.3	0.1	1.0
2.8	0.3	1.0	0.2	0.1	1.0
2.8	0.2	1.0	0.2	0.2	1.0
2.8	0.3	1.0	0.2	0.2	1.0
2.8	0.3	1.0	0.3	0.1	1.0
2.8	0.2	1.0	0.3	0.2	1.0
2.8	0.2	1.0	0.1	0.1	1.0
2.6	0.2	1.0	0.2	0.1	1.0
2.6	0.2	1.0	0.3	0.1	1.0
2.8	0.3	1.0	0.3	0.2	1.0
2.8	0.3	1.0	0.1	0.1	1.0
2.8	0.2	1.0	0.1	0.2	1.0
2.8	0.4	1.0	0.2	0.1	1.0
2.8	0.3	1.0	0.1	0.2	1.0
2.8	0.4	1.0	0.2	0.2	1.0

Optimization

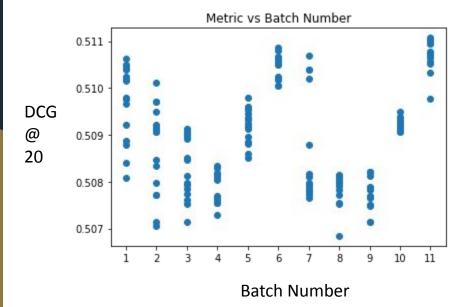
Next explorations:

title_k1	title_b	match_boost	phrase_boost	stemmed_match_boost	stemmed_phrase_boost	prediction	prediction_stddev	opportunity	expected_improvement
2.8	0.2	1.0	0.2	0.1	1.0	0.535540	0.000518	0.024276	0.023276
2.8	0.2	1.0	0.3	0.1	1.0	0.535465	0.000509	0.024202	0.023202
2.8	0.3	1.0	0.2	0.1	1.0	0.535433	0.000502	0.024170	0.023170
2.8	0.2	1.0	0.2	0.2	1.0	0.535374	0.000476	0.024111	0.023111
2.8	0.3	1.0	0.2	0.2	1.0	0.535326	0.000460	0.024063	0.023063
2.8	0.3	1.0	0.3	0.1	1.0	0.535322	0.000493	0.024059	0.023059
2.8	0.2	1.0	0.3	0.2	1.0	0.535299	0.000467	0.024036	0.023036
2.8	0.2	1.0	0.1	0.1	1.0	0.535270	0.000530	0.024007	0.023007
2.6	0.2	1.0	0.2	0.1	1.0	0.535262	0.000501	0.023999	0.022999
2.6	0.2	1.0	0.3	0.1	1.0	0.535218	0.000491	0.023955	0.022955
2.8	0.3	1.0	0.3	0.2	1.0	0.535215	0.000450	0.023952	0.022952
2.8	0.3	1.0	0.1	0.1	1.0	0.535182	0.000516	0.023919	0.022919
2.8	0.2	1.0	0.1	0.2	1.0	0.535112	0.000488	0.023849	0.022849
2.8	0.4	1.0	0.2	0.1	1.0	0.535104	0.000491	0.023841	0.022841
2.8	0.3	1.0	0.1	0.2	1.0	0.535080	0.000473	0.023817	0.022817
2.8	0.4	1.0	0.2	0.2	1.0	0.535076	0.000449	0.023813	0.022813

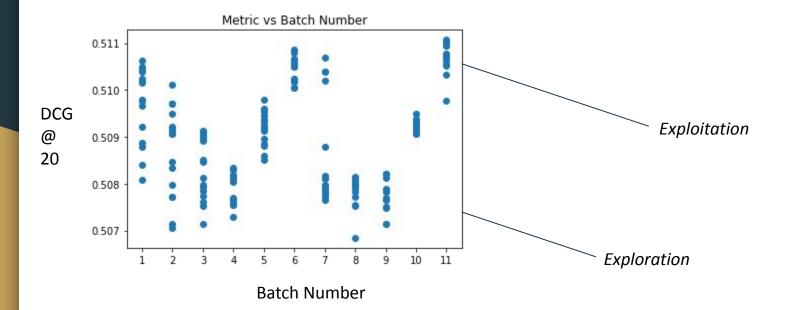
If we were higher-dimensional beings



Measuring progress



Measuring progress

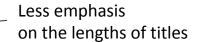


Exploring results "Best" model

Parameter	Value
b (BM25)	Low
k (BM25)	Medium
Match Boost	High
Phrase Boost	High
Stemmed Match Boost	Low
Stemmed Phrase Boost	High

Exploring results

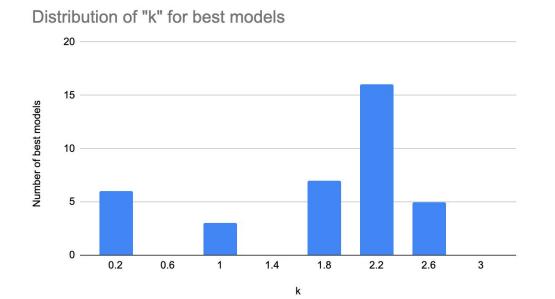
Parameter	Value
b (BM25)	Low
k (BM25)	Medium
Match Boost	High
Phrase Boost	High
Stemmed Match Boost	Low
Stemmed Phrase Boost	High



Exploring results

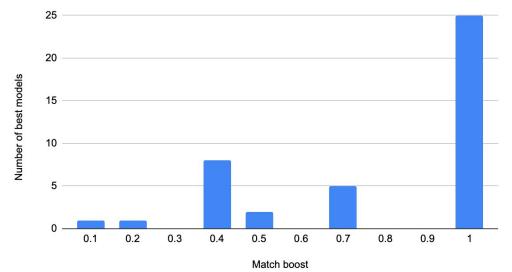
Parameter	Value
b (BM25)	Low
k (BM25)	Medium
Match Boost	High
Phrase Boost	High
Stemmed Match Boost	Low
Stemmed Phrase Boost	High

Second lesson: look at the distribution



Second lesson: look at the distribution

Distribution of "Match Boost" for best models

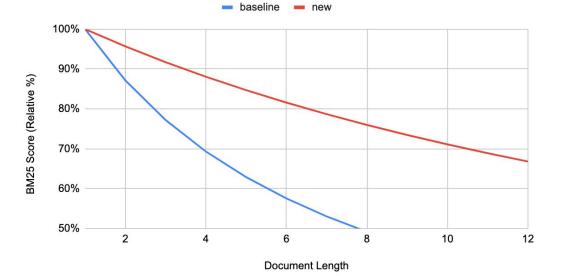


Summary of changes

Parameter Change		Effect
b (BM25)	$High \to Low$	Less penalization on document lengths
Stemmed Match Boost	$High \to Low$	Stemmed matches come lower in search results. Still boosts recall
Stemmed Phrase Boost	$Low \to High$	Doubling-down on high-precision phrases

BM25: before and after

BM25 Penalization on Document Length (baseline vs new)



Evaluation

downsample_nam	e ds_num_docs	ds_num_queries	test_dcg_at_20	control_dcg_at_20	dcg_test_minus_control	change_in_dcg_relative	significance

grid_no_noise_bigger	36389	1440	0.51050	0.51025	0.000	0.0%	False
brokers_prod_small	151771	215	0.22815	0.22047	0.008	3.5%	True
manual_with_noise	123871	1879	0.41519	0.39553	0.020	5.0%	True

Evaluation

downsample_name ds_num_docs ds_num_queries test_dcg_at_20 control_dcg_at_20 dcg_test_minus_control change_in_dcg_relative significance

grid_no_noise_bigger	36389	1440	0.51050	0.51025	0.000	0.0%	False
brokers_prod_small	151771	215	0.22815	0.22047	0.008	3.5%	True
manual_with_noise	123871	1879	0.41519	0.39553	0.020	5.0%	True

Evaluation

downsample_name	ds_num_docs	ds_num_queries	test_dcg_at_20	control_dcg_at_20	dcg_test_minus_control	change_in_dcg_relative	significance
grid_no_noise_bigger	36389	1440	0.51050	0.51025	0.000	0.0%	False
brokers_prod_small	151771	215	0.22815	0.22047	0.008	3.5%	True
manual_with_noise	123871	1879	0.41519	0.39553	0.020	5.0%	True

1. Your search engine might have the right strategies

Takeaways

- 1. Your search engine might have the right strategies
 - ✓ Sometimes all that's needed is a re-balance of signals

Takeaways

- 1. Your search engine might have the right strategies
 - ✓ Sometimes all that's needed is a re-balance of signals
- 2. Parameter optimization is both a science and an art

Takeaways

- 1. Your search engine might have the right strategies
 - ✓ Sometimes all that's needed is a re-balance of signals
- 2. Parameter optimization is both a science and an art
 - Evaluate on the right data
 - ✓ Optimize the right metric
 - ✓ Share parameters where possible
 - ✓ Constrain parameters using your judgment
 - Explore the distribution of good models

Future work

- 1. Better understanding and tuning the optimizer
- 2. Comparing to baselines like random grid search and LTR / LTB

Future work

- 1. Better understanding and tuning the optimizer
- 2. Comparing to baselines like random grid search and LTR / LTB
- 3. Lots more!
 - The value of theta for controlling the level of exploration
 - Enforcing randomness across parallel jobs (otherwise they perform similar explorations)
 - The best way to initialize the optimization with random samples
 - Which regression to use, which kernels to use

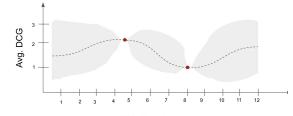
So when do you use LTR instead?

Pro: Arbitrary functional form of the features

Con: More infrastructure and (re)training

Con: Static functional form (your Elasticsearch query)

Pro: Simple infrastructure



Title Boost

We're growing

shopify.com/careers

Our 3,000+ employees at our annual Summ

Thank You!