
Bayesian Optimization
at Shopify

Andy Toulis, Sr. Data Scientist @ Shopify
Doug Turnbull, Relevance Eng @ Shopify

Discovery Experiences

About Discovery Experience at Shopify

● Search and
recommendations for
millions of merchants

● Empowering
merchants by giving
them state of the art
search and discovery
tooling

● Deepening
relationships between
merchants and their
buyers

Shoutouts and Citations

● Josh Devins (of Elastic) work with MS Marco using Bayesian optimization
○ https://www.elastic.co/blog/improving-search-relevance-with-data-driven-query-optimization

● Distil.pub’s great Bayesian Optimization article - https://distill.pub/2020/bayesian-optimization/

● Live coding Bayesian Optimization from Scratch - https://www.twitch.tv/manningpublications/video/1237632681

NB - https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

https://www.elastic.co/blog/improving-search-relevance-with-data-driven-query-optimization
https://distill.pub/2020/bayesian-optimization/
https://www.twitch.tv/manningpublications/video/1237632681
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Motivation

● Jump to LTR with crazy plugin built by mad scientist and lots of infra!!?!?

● Just use out of the box Elasticsearch with optimized query and index

features?

OR

Let’s bake a cake
Ingredient Quantity??

Flour

Baking Powder

Milk

Sugar

Eggs

Time
Combine
Ingredients

Bake N
minutes

Taste and Test

Update Ingred.
Quantities

Let’s not do this

One option - grid search

Ingredient Quantity Range Increments

Flour 8 oz – 3 cups 1 oz

Baking
Powder

1 tsp - 8 tsp 1 tsp

Milk 8 oz - 3 cups 1 oz

Sugar 1 tsp - 8 tsp 1 tsp

Eggs 1 egg - 4 eggs 1 egg

Time 10 min. - 25 min. 1 min.

Combine
Ingredients

Bake N
minutes

Taste and Test

Update Ingred.
Quantities

(Increment
flour 1 oz)

(Try every combination of ingredients)

Problem - baking time consuming

Ingredient Quantity Range Increments

Flour 8 oz – 24 oz 1 oz

Baking
Powder

0 tsp - 8 tsp 1 tsp

Milk 8 oz - 24 oz 1 oz

Sugar 0 tsp - 8 tsp 1 tsp

Eggs 0 egg - 4 eggs 1 egg

Time 10 min. - 25 min. 1 min.

Combine
Ingredients

Bake N minutes

Taste and Test

Update Ingred.
Quantities

(Increment
flour 1 oz)

Problem - baking time consuming

Ingredient Quantity Range Increments Combinations

Flour 8 oz – 24 oz 1 oz 16

Baking
Powder

0 tsp - 8 tsp 1 tsp 9

Milk 8 oz - 24 oz 1 oz 16

Sugar 0 tsp - 8 tsp 1 tsp 9

Eggs 0 egg - 4 eggs 1 egg 5

Time 10 min. - 25 min. 1 min. 15

To find best cake, must Try:

16 * 9 * 16 * 9 * 5 * 15 =

1,555,200!!!

~ 31 million minutes to
try every combination

~ 60 years of baking

Search Relevance optimization like baking

Ingredient
Boost
(or other param)

Quantity Range Increments

Title 0…20 1

Body 0...20 1

Title k1 0…2 0.1

Title b 0…2 0.1

title
min-should-match

0%-100% 10%

…

Create
queries

Search
1000
Queries

Evaluate
Relevance
 (ie NDCG, etc)

Update Ingred.
Quantities

(Increment
title boost
0.1)

(Expensive to try 1000s of queries with one set of boosts)

Grid search also not ideal…

Ingredient
Boost
(or other param)

Quantity Range Increments Combinations

Title 0…20 1 21

Body 0...20 1 21

Title k1 0…2 0.1 21

Title b 0…2 0.1 21

title
min-should-match

0%-100% 10% 11

…

To find best cake, must Try:

21 * 21 * 21 * 21 * 21 * 11 =

2,139,291 params!!!

One run = 1 min…

2,139,291 minutes

~ 4 years of compute

Intuition, what if we tracked good / bad combos?

Boost
(or other param)

Quantity

Title 15

Body 5

Title k1 1.2

Title b 1

title
min-should-match

25%

…

This observation seems pretty good!
Mean NDCG = 0.75

Intuition:

NEARBY PARAMS ALSO LIKELY GOOD
Mean NDCG ~ 0.75

Boost
(or other param)

Updated Quantity

Title 15 + 1

Body 5 - 1

Title k1 1.2 + 0.1

Title b 1

title
min-should-match

25%

…

Next – try nearby or distant observation?
EXPLOIT

Nearby may be a little bit better?
(but only incrementally)
Mean NDCG > 0.75?

Boost
(or other param)

Updated Quantity

Title 15 + 1

Body 5 - 1

Title k1 1.2 + 0.1

Title b 1

title
min-should-match

25%

…

EXPLORE:

Farther away may gain more knowledge?
(but with greater downside risk)
Mean NDCG ~ 0.9??

Boost
(or other param)

Updated Quantity

Title 15 - 5

Body 5 + 4

Title k1 1.2 + 0.8

Title b 1 - 0.2

title
min-should-match

25%

…

VS

Gaussian Regression

C
ak

e
D

el
ic

io
us

ne
ss

Amount of Flour

8 oz 9 oz 10oz 11oz 12oz 13oz 14oz 15oz 16oz 17oz 19oz18oz

1

2

3

Educated guess
at cake quality

Uncertainty grows
with distance from
past attempts

Actual cakes
baked

Models BOTH predictions AND a gaussian distribution of
that prediction’s likelihood

Is there enough
possible upside to
exploring very far?

Or better to stay close
to existing observation?

Gaussian Regression - Search
Av

g.
 D

C
G

Title Boost

1 2 3 4 5 6 7 8 9 10 1211

1

2

3

What’s the next ‘title
boost’ we should try?

Practically speaking…
D

C
G

body_fuzziness

1 2 3 4 5 6 7 8 9 10 1211

1

2

3

{
 "query": {
 "bool": {
 "must": [
 {
 "bool": {
 "should": [
 {
 "match": {
 "title": {
 "query": "{{query_term}}",
 "boost": {{title_boost}},
 }
 }
 },
 {
 "match": {
 "body": {
 "query": "{{query_term}}",
 "fuzziness": {{body_fuzziness}},
 "prefix_length": 4,
 "fuzzy_transpositions": true,
 "boost": {{fuzzy_body_boost}}
 }
 }
 },

Params
~ baking
ingredients

Using Mustache Templates
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-template.html

Choose next candidate
1. Select N random points
2. Probe in Gaussian Process Regressor model
3. Score the best one to explore
4. Bake Cake Try out searches with new params!

M
ea

n
D

C
G

body_fuzziness

1 2 3 4 5 6 7 8 9 10 1211

1

2

3

{
 "query": {
 "bool": {
 "must": [
 {
 "bool": {
 "should": [
 {
 "match": {
 "title": {
 "query": "{{query_term}}",
 "boost": {{title_boost}},
 }
 }
 },
 {
 "match": {
 "body": {
 "query": "{{query_term}}",
 "fuzziness": {{body_fuzziness}},
 "prefix_length": 4,
 "fuzzy_transpositions": true,
 "boost": {{fuzzy_body_boost}}
 }
 }
 },

(we also use index-time params…)

Training

from sklearn.gaussian_process import GaussianProcessRegressor
import pandas as pd

runs_so_far = pd.DataFrame(sorted_by_perf)

y_train = runs_so_far['mean_dcg']
x_train = runs_so_far[['title_boost','fuzzy_body_boost','body_boost']]

gpr = GaussianProcessRegressor()
gpr.fit(x_train.to_numpy(), y_train.to_numpy())

Open sourced demo in OpenSource Connection’s “Hello LTR” project
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Probability of Improvement
Score using the probability a selected point will yield any improvement

Title
Boost

Body
Fuzziness

Body
Boost

GPR
Pred. DCG

GPR
Std Dev

(Expectation - Max) /
stddev

0 1 5 1.5 1.0 (1.5 - 2.1) / 1.0 = -0.6

10 3 1 2.3 0.2 (2.3 - 2.1) / 0.2 = 1.0

12 2 4 1.2 0.6 (1.2 - 2.1) / 0.6 = -1.5

Current Max Observation
Title Boost = 10, Body Fuzziness = 3, Body Boost = 2
DCG = 2.1

Max Candidate
Chosen

Numerator ~ ‘opportunity’
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Denominator - is this a sure thing?
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Moves the mass of the
probability
distribution above
current max

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Theta - control explore vs exploit
https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

High theta = Explore: completely ignore opportunity, choose areas of
high std dev

Low theta = Exploit: use a lot of signal from opportunity

https://github.com/o19s/hello-ltr/blob/main/notebooks/elasticsearch/tmdb/bayesian-optimization.ipynb

Probability of Improvement
Score using the probability a selected point will yield any improvement

Title
Boost

Body
Fuzziness

Body
Boost

GPR
Pred. DCG

GPR
Std Dev

(Expectation - Max - Theta) /
stddev

0 1 5 1.5 1.0 (1.5 - 2.1 - 20) / 1.0 = -20.6

10 3 1 2.3 0.2 (2.3 - 2.1 - 20) / 0.2 = -99

12 2 4 1.2 0.6 (1.2 - 2.1 - 20) / 0.6 = -20.9

Current Max Observation
Title Boost = 10, Body Fuzziness = 3, Body Boost = 2
DCG = 2.1; Theta = 20

Max Candidate
Chosen

Even better - Expected Improvement

Not just whether an improvement will occur but how much
improvement to expect!

Boogie - our offline experimentation framework

Analysis Optimization

Experiment

Turn qualitative problems
into quantitative target

Try out different approaches
to solve the problem

Find the optimal version of a
solution

“Relevance bad” -> improve DCG on storefront
judgments

“Improve in-network precision” -> reduce num
results, but hold DCG steady

How to best improve DCG?

We know now title boost is good, but
what value, specifically?

Example
Walkthrough

Shop app

Shop app

Going back
old results for “sailor moon ring”

Going back
old results for “sailor moon ring”

“moon ring” “sailor moon”

Our setup (at the time)

phrase matching
stemming

minimum
should match

…

we could see plenty of good products lower in search results!

Right setup, wrong parameters

Parameter Value

Match Boost High?

Phrase Boost Medium?

Stemmed Match Boost Medium?

Stemmed Phrase Boost Low?

“OST x Sailor Moon -
Warrior Silence Grave Ring”

“OST x Sailor Moon -
Beautiful Warrior Moonlight Miss Ring”

“OST x Sailor Moon -
Warrior Sailor Moon Garnet Ring”

“OST x Sailor Moon -
Cutie Sailor Moon Road Ring”

new results for
“sailor moon ring”

Recipe for optimization

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

Training

“jeans”, “wallet”,
“t-shirt”, “k pop”, …

Hold-out

“washi tape”, “notebook”,
“jacket”, “airpods”,
“shorts”, “candy”,

“sailor moon ring”, …

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

Query Product Grade

jeans original jeans 0.42

grey jeans 0.13

jean outfit 0.06

jean jacket 0.02

Goal: optimize DCG

judgments for
the query
“jeans”

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

Parameter

Match Boost

Phrase Boost

Stemmed Match Boost

Stemmed Phrase Boost

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

Parameter

Match Boost

Phrase Boost

Stemmed Match Boost

Stemmed Phrase Boost

Minimum Should Match

share parameters
where possible!

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

✓ works for non-linear setups
(example: multiplied scores)

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

5. Explore the best models

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

5. Explore the best models

6. Iterate if needed!
(training data, metric to optimize, parameter ranges, optimizer settings)

Recipe for optimization
1. Set up a training sample to optimize on, and a hold-out for evaluation

2. Plan which parameters you will optimize

3. Set reasonable ranges for parameters

4. Run the optimizer on your training sample

5. Explore the best models

6. Iterate if needed!

✓ Applied each
relevance cycle

Experiment time!

Parameters

Query parameters

Index parameters

only focusing on
product titles

Parameters

Parameters
BM25 parameters in
their typical ranges

BM25
- b
- k

Parameters

Boosts ranging
between 0.1 and 1.0

unstemmed
- match
- match_phrase

Parameters

Same idea, but for
stemmed product titles

stemmed
- match
- match_phrase

(BM25 detour)

Role of “b”

Role of “k”

no term frequencies

Role of “k”X

Back to the
experiment

Results!

Parameter Value

b (BM25) High

k (BM25) High

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

Results?

Parameter Value

b (BM25) High

k (BM25) High

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

Results?

product titles provide critical information!

“OST x Sailor Moon -
Beautiful Warrior Moonlight Miss Ring”

First lesson: optimizers are lazy

“shirt”

First lesson: optimizers are lazy

“shirt”

if there is a loophole, the
optimizer will find it

First lesson: optimizers are lazy

(source: https://dragonflyai.co)

Attempt two
Forcing exploration around
lower “b” values

Optimization

Optimization

If we were higher-dimensional beings

Measuring progress

DCG
@
20

Batch Number

Measuring progress

Exploration

Exploitation
DCG
@
20

Batch Number

Exploring results

Parameter Value

b (BM25) Low

k (BM25) Medium

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

“Best” model

Exploring results

Parameter Value

b (BM25) Low

k (BM25) Medium

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

Less emphasis
on the lengths of titles

Exploring results

Parameter Value

b (BM25) Low

k (BM25) Medium

Match Boost High

Phrase Boost High

Stemmed Match Boost Low

Stemmed Phrase Boost High

Phrase matches have
strong boosts

Second lesson: look at the distribution

Second lesson: look at the distribution

Summary of changes
Parameter Change Effect

b (BM25) High → Low Less penalization on document lengths

Stemmed Match Boost High → Low Stemmed matches come lower in search
results. Still boosts recall

Stemmed Phrase Boost Low → High Doubling-down on high-precision phrases

BM25: before and after

Evaluation

Evaluation

Evaluation

Takeaways
1. Your search engine might have the right strategies

Takeaways
1. Your search engine might have the right strategies

✓ Sometimes all that’s needed is a re-balance of signals

Takeaways
1. Your search engine might have the right strategies

✓ Sometimes all that’s needed is a re-balance of signals

2. Parameter optimization is both a science and an art

Takeaways
1. Your search engine might have the right strategies

✓ Sometimes all that’s needed is a re-balance of signals

2. Parameter optimization is both a science and an art
✓ Evaluate on the right data
✓ Optimize the right metric
✓ Share parameters where possible
✓ Constrain parameters using your judgment
✓ Explore the distribution of good models

Future work
1. Better understanding and tuning the optimizer

2. Comparing to baselines like random grid search and LTR / LTB

Future work
1. Better understanding and tuning the optimizer

2. Comparing to baselines like random grid search and LTR / LTB

3. Lots more!

- The value of theta for controlling the level of exploration
- Enforcing randomness across parallel jobs (otherwise they perform similar explorations)
- The best way to initialize the optimization with random samples
- Which regression to use, which kernels to use

So when do you use LTR instead?

Pro: Arbitrary functional
form of the features

Con: Static functional form
(your Elasticsearch query)

Con: More infrastructure
and (re)training

Pro: Simple infrastructure

We’re growing
shopify.com/careers

Our 3,000+ employees at our annual Summit

Thank You!

