
Learning to Boost
Logistic Regression to Optimize Elasticsearch Boosts

Nina Xu and Jenna Bellassai
Haystack Conference 2021

1

What is Guru?

2

3

With Guru, you can asynchronously:

● Share critical product information
● Onboard employees autonomously
● Streamline internal communications

Helping the most innovative companies in the
world work smarter—from anywhere.

Guru is a company wiki
that works in your
workflow.

4

Create and share trusted content

Who We Are

5

Search & Discovery Team

Jeff Plater
BE Eng (Lead)

Yev Meyer
Data Science

Jenna Bellassai
Data Science

Sean Fleming
BE Eng

Michael Wangia
BE Eng

Nabin Mulepati
ML Eng

Bernie Gray
Data Science

Bennett Ferris
Data Science

Nina Xu
Data Science

Laura "LDB"
Desmond-Black

PM

Jake Sauer
Design

Tracy Hall
FE Eng

Adam Gruber
FE Eng

6

Search at Guru
● Customers search for information

contained in "Cards" in their own
instance

● B2B use case: information is
particular to each customer

● Elasticsearch

7

What holidays do I get?

Company Holidays

Information landscape
● Thousands of companies

○ From a variety of industries
○ Create and maintain their own documents
○ Company-specific jargons
○ Customers are the subject matter experts, not us

● Large companies
○ 10k+ documents
○ 5k+ of queries per day

● Mid-sized companies
○ ~100+ documents
○ A few queries per day

8

Outline
1. Problem Statement
2. Approach
3. Results
4. Special Considerations

9

Problem Statement

10

Elasticsearch query (simplified)

11

Elasticsearch query (realistic)

12

Many field boosts to tune

Review: how to choose
Elasticsearch boost values?

13

Manual tuning
● Advantages:

○ Easy to use
○ Guided by search metrics

● Limitations:
○ Requires explicit relevance

judgements
○ Requires some domain expertise
○ Hard to extend to multi-tenant

use case

quepid.com/

14

https://quepid.com/

Grid search

elastic.co/blog/test-driven-relevance-tuning-of-elas
ticsearch-using-the-ranking-evaluation-api

● Advantages
○ More thorough than "try it and

see"
● Limitations

○ Permutation explosion

15

https://www.elastic.co/blog/test-driven-relevance-tuning-of-elasticsearch-using-the-ranking-evaluation-api
https://www.elastic.co/blog/test-driven-relevance-tuning-of-elasticsearch-using-the-ranking-evaluation-api

Genetic algorithms

haystackconf.com/us2020/evolving-relevance/

github.com/tballison/quaerite

16

● Advantages
○ Data-driven
○ Can test many parameters

besides just boosts
○ No linearity constraint (more on

this later)
● Limitations

○ May not scale well with
complexity

https://haystackconf.com/us2020/evolving-relevance/
https://github.com/tballison/quaerite

Learning to Rank

opensourceconnections.com/blog/2017/02/1
4/elasticsearch-learning-to-rank/

github.com/o19s/elasticsearch-learning-to-rank

● Advantages:
○ Data-driven

● Limitations:
○ High data need
○ High barrier to entry
○ Usually done at reranking step

due to high computation
demand

17

https://opensourceconnections.com/blog/2017/02/14/elasticsearch-learning-to-rank/
https://opensourceconnections.com/blog/2017/02/14/elasticsearch-learning-to-rank/
https://github.com/o19s/elasticsearch-learning-to-rank

Approach
Learning to Boost - How It Works

Implementation

18

What It Is

Learning to Boost (LTB) is a
logistic regression model that
uses relevance judgements to
determine the optimal
Elasticsearch boost values for an
Elasticsearch query.

19

Why should you care?
● Data-driven
● Easy to train
● Easy to productionize (you’ll see)
● Automated for future iterations

20

How it works - data requirement

title overview ...
3 20 ...

title overview ...
9 0 ...

title overview ...
2 4 ...

0Doc 1

title overview ...
0 1 ...

Doc 2

Doc 3

Doc n

1

0

0

Relevance
label

... ...

BM25
scores

Docs from
a query

21

Elasticsearch scoring (commonly)

title overview ...
3 20 ...

title overview ...
9 0 ...

title overview ...
2 4 ...

13Doc 1

title overview ...
0 1 ...

Doc 2

Doc 3

Doc n

9

4

0.5

Document
score

... ...

BM25
scores

title overview
boost boost …
1 0.5 ...

Doc 1

Doc 2

Doc 3

Doc n

22

Optimal boost

title overview ...
3 20 ...

title overview ...
9 0 ...

title overview ...
2 4 ...

Doc 1

title overview ...
0 1 ...

Doc 2

Doc 3

Doc n

...

BM25
scores

9

5

2.4

0.1

Document
score

...

Doc 2

Doc 1

Doc 3

Doc n

23

title overview
boost boost …
1 0.1 ...

How it works - regression coef. for boosts

Elasticsearch scoring (commonly):

score = boost1*BM251 + boost2*BM252

Logistic regression:

where p is the probability that a binary
label is 1

24

Implementation

Collect Data

Replay past searches
with all boosts set to 1.
Record explanations
for each result.

Featurize

Transform search
explanations from trial
into features. Add
labels according to
user behavior.

Train

Train logistic
regression model.

Deploy

Deploy changes to
Elasticsearch boosts in
production. 😎

Evaluate

Replay past searches
using learned model
coefficients as boost
values. Evaluate
rankings.

25

Implementation

Collect Data

Replay past searches
with all boosts set to 1.
Record explanations
for each result.

26

How do we replay past searches?
● We use a homegrown framework ("offline search trials") to replay millions of

past searches using a specified algorithm in an environment isolated from
production.

● We compare the results of those replayed searches to the results we saw in
prod.

● For Learning to Boost, an initial search trial using an Elasticsearch query with
boosts set to 1 provides us with training data (search explanations and scores).

27

Collect Data

28

Collect Data

29

Collect Data

30

Implementation

Collect Data

Replay past searches
with all boosts set to 1.
Record explanations
for each result.

Featurize

Transform search
scores and
explanations from trial
into features. Add
labels according to
user behavior.

31

Featurize

search
_id

doc_id title overvi
ew

label

...

172 2 8.838 7.622 1

...

{
 "total_score": 16.460304,
 "title": 8.837944,
 "overview": 7.6223593
}

32

Implementation

Collect Data

Replay past searches
with all boosts set to 1.
Record explanations
for each result.

Featurize

Transform search
scores and
explanations from trial
into features. Add
labels according to
user behavior.

Train

Train logistic
regression model.

33

The pairwise approach
Why?

Elasticsearch scores are not comparable across queries

title overview ...
3 20 ...

title overview ...
9 0 ...

title overview ...
2 4 ...

title overview ...
0 1 ...

...

Query 1

title overview ...
30 100 ...

title overview ...
90 0 ...

title overview ...
20 40 ...

title overview ...
0 10 ...

...

Query 2

34

The pairwise approach

Pointwise LTR: Pairwise LTR:

http://bendersky.github.io/res/TF-Ranking-ICTIR-2019.pdf35

http://bendersky.github.io/res/TF-Ranking-ICTIR-2019.pdf

Pairwise data
How?

- Take difference of the feature values for each pair of docs from the same query
- Create new labels based on comparison of relevance

title overview ...
3 10 ...

title overview ...
9 0 ...

title overview ...
2 4 ...

0Doc 1

Doc 2

Doc 3

1

0

Relevance
label

... ...

BM25
scores

title overview ...
-6 10 ... 01 vs. 2

1 vs. 3

... ...

Comparison
label

Score
differences

12 vs. 3 title overview ...
7 -4 ...

36

Logistic regression on pairwise data
Let i, j denote two documents from the search result list.

From

We have

If , doc i is more relevant than doc j

Same boost values!

37

Fit logistic regression model
Use your favorite package to make it happen!

- pyspark.ml

- scikit-learn

Make sure to restrict coefficients to non-negative values

38

Implementation

Collect Data

Replay past searches
with all boosts set to 1.
Record explanations
for each result.

Featurize

Transform search
scores and
explanations from trial
into features. Add
labels according to
user behavior.

Train

Train logistic
regression model.

Evaluate

Run and evaluate a
search trial that replays
past searches using
learned model
coefficients as boost
values.

39

Evaluate & Iterate

Train set
(700k+ searches)

Logistic regression

Test set
(1 mil+ searches)

Offline search trial

Ranking metrics, compared to
baseline:

● MAP@k
● NDCG@k

Dev set
(80k+ searches)

Regression metrics, compared
to baseline:

● False positive/negative
rates

● AUC

03

01 02

Iterating ideas:
● Regularization parameters for multicollinearity &

feature selection
● Normalize feature scores by query*

* eg. the normalization factor is the max feature score for each query
40

Implementation

Collect Data

Replay past searches
with all boosts set to 1.
Record explanations
for each result.

Featurize

Transform search
explanations from trial
into features. Add
labels according to
user behavior.

Train

Train logistic
regression model.

Deploy

Deploy changes to
Elasticsearch boosts in
production. 😎

Evaluate

Replay past searches
using learned model
coefficients as boost
values. Evaluate
rankings.

41

Deploy
Just change the boost values.

42

What if we need to add a new field?

43

What if we need to add a new field?

44

01

02

03

04Train set

Logistic regression

Dev set

Regression metrics, compared
to baseline:

● False positive/negative
rates

● AUC

Collect data and
featurize with new field

Test set

Offline search trial

Ranking metrics, compared to
baseline:

● MAP@k
● NDCG@k

Results

45

Results

Model AUC MAP@5

Baseline (hand-tuned) 0.897 0.332

LTB 0.911 (+1.6%) 0.336 (+1.2%)

46

Special Considerations

47

Some prerequisites (for us)
- Event tracking enabled us to obtain implicit

judgements
- Our home-grown offline search trial framework

allowed us to
- Obtain training data
- Replay searches with new boost values
- Calculate search metrics

48

Linearity constraint
The regression approach is useful for

- Queries where field scores are summed together
- Identifying top-level boost values if granular-level

field scores are not additive

The regression approach is not useful for

- the script_score portion of the query*
- multi-match queries with best_fields type
- dis_max queries with tie_breaker

49

Labeling considerations
Implicit vs. explicit judgment

- Both work
- Implicit judgment allows for bigger sample size and

is suitable for the enterprise use case
- Explicit judgment is less prone to position bias

Binary vs. graded relevance

- Use logistic regression for binary labels
- Use ordinal regression for graded labels eg. 1, 2, 3, 4

50

Loss function vs. search metric
- The binary logistic loss (cross-entropy loss) does not

take into account position of documents
- Ranking metrics in search usually consider position
- In practice, the logistic regression metrics & ranking

metrics generally agree until AUC gets very close to 1

51

LTB is not intended to replace LTR 😊

52

Presentation resources

53

https://stageapp.getguru.com/card/ijR4gaeT/Learning-to-Boost-Presentation-Resources-Haystack-Conference-2021

getguru.com/careers

● Sr. Search Engineer
● Sr. Machine Learning Engineer
● Sr. Full Stack Engineer
● Sr. Backend Engineer
● Sr. Frontend Engineer
● …

Based in Philadelphia, San Francisco, or remote!

We are hiring!

54

https://www.getguru.com/careers

Thank you!

55

