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What is Guru?
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With Guru, you can asynchronously:

● Share critical product information
● Onboard employees autonomously 
● Streamline internal communications

Helping the most innovative companies in the 
world work smarter—from anywhere. 

Guru is a company wiki 
that works in your 
workflow. 
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Create and share trusted content



Who We Are
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Search at Guru
● Customers search for information 

contained in "Cards" in their own 
instance

● B2B use case: information is 
particular to each customer

● Elasticsearch
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What holidays do I get?

Company Holidays



Information landscape
● Thousands of companies 

○ From a variety of industries
○ Create and maintain their own documents
○ Company-specific jargons
○ Customers are the subject matter experts, not us

● Large companies
○ 10k+ documents
○ 5k+ of queries per day

● Mid-sized companies
○ ~100+ documents
○ A few queries per day
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Outline
1. Problem Statement
2. Approach
3. Results
4. Special Considerations
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Problem Statement
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Elasticsearch query (simplified)
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Elasticsearch query (realistic)
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Many field boosts to tune



Review: how to choose 
Elasticsearch boost values?
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Manual tuning
● Advantages:

○ Easy to use
○ Guided by search metrics

● Limitations:
○ Requires explicit relevance 

judgements
○ Requires some domain expertise
○ Hard to extend to multi-tenant 

use case

quepid.com/
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https://quepid.com/


Grid search

elastic.co/blog/test-driven-relevance-tuning-of-elas
ticsearch-using-the-ranking-evaluation-api

● Advantages
○ More thorough than "try it and 

see"
● Limitations

○ Permutation explosion
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https://www.elastic.co/blog/test-driven-relevance-tuning-of-elasticsearch-using-the-ranking-evaluation-api
https://www.elastic.co/blog/test-driven-relevance-tuning-of-elasticsearch-using-the-ranking-evaluation-api


Genetic algorithms

haystackconf.com/us2020/evolving-relevance/

github.com/tballison/quaerite
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● Advantages
○ Data-driven
○ Can test many parameters 

besides just boosts
○ No linearity constraint (more on 

this later)
● Limitations

○ May not scale well with 
complexity

https://haystackconf.com/us2020/evolving-relevance/
https://github.com/tballison/quaerite


Learning to Rank

opensourceconnections.com/blog/2017/02/1
4/elasticsearch-learning-to-rank/

github.com/o19s/elasticsearch-learning-to-rank

● Advantages:
○ Data-driven

● Limitations:
○ High data need
○ High barrier to entry
○ Usually done at reranking step 

due to high computation 
demand
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https://opensourceconnections.com/blog/2017/02/14/elasticsearch-learning-to-rank/
https://opensourceconnections.com/blog/2017/02/14/elasticsearch-learning-to-rank/
https://github.com/o19s/elasticsearch-learning-to-rank


Approach
Learning to Boost - How It Works

Implementation
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What It Is

Learning to Boost (LTB) is a 
logistic regression model that 
uses relevance judgements to 
determine the optimal 
Elasticsearch boost values for an 
Elasticsearch query.
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Why should you care?
● Data-driven
● Easy to train
● Easy to productionize (you’ll see)
● Automated for future iterations
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How it works - data requirement
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Elasticsearch scoring (commonly)

title overview ...
3 20 ...

title overview ...
9 0 ...

title overview ...
2 4 ...

13Doc 1

title overview ...
0 1 ...

Doc 2

Doc 3

Doc n

9

4

0.5

Document 
score

... ...

BM25 
scores

title overview
boost boost …
1 0.5 ...

Doc 1

Doc 2

Doc 3

Doc n

22



Optimal boost
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title overview
boost boost …
1 0.1 ...



How it works - regression coef. for boosts

Elasticsearch scoring (commonly):

score = boost1*BM251 + boost2*BM252

Logistic regression:

where p is the probability that a binary 
label is 1
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Implementation

Collect Data

Replay past searches 
with all boosts set to 1. 
Record explanations 
for each result.

Featurize

Transform search 
explanations from trial 
into features. Add 
labels according to 
user behavior.

Train

Train logistic 
regression model.

Deploy

Deploy changes to 
Elasticsearch boosts in 
production. 😎

Evaluate

Replay past searches 
using learned model 
coefficients as boost 
values. Evaluate 
rankings.
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Implementation

Collect Data

Replay past searches 
with all boosts set to 1. 
Record explanations 
for each result.
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How do we replay past searches?
● We use a homegrown framework ("offline search trials") to replay millions of 

past searches using a specified algorithm in an environment isolated from 
production.

● We compare the results of those replayed searches to the results we saw in 
prod.

● For Learning to Boost, an initial search trial using an Elasticsearch query with 
boosts set to 1 provides us with training data (search explanations and scores).
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Collect Data
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Collect Data
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Collect Data
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Implementation

Collect Data

Replay past searches 
with all boosts set to 1. 
Record explanations 
for each result.

Featurize

Transform search 
scores and 
explanations from trial 
into features. Add 
labels according to 
user behavior.
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Featurize

search
_id

doc_id title overvi
ew

label

... ... ... ... ...

172 2 8.838 7.622 1

... ... ... ... ...

{
    "total_score": 16.460304,
    "title": 8.837944,
    "overview": 7.6223593
}

32



Implementation

Collect Data

Replay past searches 
with all boosts set to 1. 
Record explanations 
for each result.

Featurize

Transform search 
scores and 
explanations from trial 
into features. Add 
labels according to 
user behavior.

Train

Train logistic 
regression model.
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The pairwise approach
Why?

Elasticsearch scores are not comparable across queries
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The pairwise approach

Pointwise LTR: Pairwise LTR:

http://bendersky.github.io/res/TF-Ranking-ICTIR-2019.pdf35

http://bendersky.github.io/res/TF-Ranking-ICTIR-2019.pdf


Pairwise data
How?

- Take difference of the feature values for each pair of docs from the same query
- Create new labels based on comparison of relevance
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Logistic regression on pairwise data
Let i, j denote two documents from the search result list.

From 

We have 

If              , doc i is more relevant than doc j           

Same boost values!
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Fit logistic regression model
Use your favorite package to make it happen!

- pyspark.ml

- scikit-learn

Make sure to restrict coefficients to non-negative values
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Implementation

Collect Data

Replay past searches 
with all boosts set to 1. 
Record explanations 
for each result.

Featurize

Transform search 
scores and 
explanations from trial 
into features. Add 
labels according to 
user behavior.

Train

Train logistic 
regression model.

Evaluate

Run and evaluate a 
search trial that replays 
past searches using 
learned model 
coefficients as boost 
values.
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Evaluate & Iterate

Train set
(700k+ searches)

Logistic regression

Test set
(1 mil+ searches)

Offline search trial

Ranking metrics, compared to 
baseline:

● MAP@k
● NDCG@k

Dev set 
(80k+ searches)

Regression metrics, compared 
to baseline:

● False positive/negative 
rates

● AUC

03 

01 02 

Iterating ideas:
● Regularization parameters for multicollinearity & 

feature selection
● Normalize feature scores by query*

* eg. the normalization factor is the max feature score for each query
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Implementation

Collect Data

Replay past searches 
with all boosts set to 1. 
Record explanations 
for each result.

Featurize

Transform search 
explanations from trial 
into features. Add 
labels according to 
user behavior.

Train

Train logistic 
regression model.

Deploy

Deploy changes to 
Elasticsearch boosts in 
production. 😎

Evaluate

Replay past searches 
using learned model 
coefficients as boost 
values. Evaluate 
rankings.
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Deploy
Just change the boost values.
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What if we need to add a new field?
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What if we need to add a new field?
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03

04Train set

Logistic regression

Dev set

Regression metrics, compared 
to baseline:

● False positive/negative 
rates

● AUC

Collect data and 
featurize with new field

Test set

Offline search trial

Ranking metrics, compared to 
baseline:

● MAP@k
● NDCG@k



Results
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Results

Model AUC MAP@5 

Baseline (hand-tuned) 0.897 0.332

LTB 0.911 (+1.6%) 0.336 (+1.2%)
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Special Considerations
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Some prerequisites (for us)
- Event tracking enabled us to obtain implicit 

judgements
- Our home-grown offline search trial framework 

allowed us to
- Obtain training data
- Replay searches with new boost values
- Calculate search metrics
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Linearity constraint
The regression approach is useful for

- Queries where field scores are summed together
- Identifying top-level boost values if granular-level 

field scores are not additive

The regression approach is not useful for

- the script_score portion of the query*
- multi-match queries with best_fields type
- dis_max queries with tie_breaker 
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Labeling considerations
Implicit vs. explicit judgment

- Both work
- Implicit judgment allows for bigger sample size and 

is suitable for the enterprise use case
- Explicit judgment is less prone to position bias

Binary vs. graded relevance

- Use logistic regression for binary labels
- Use ordinal regression for graded labels eg. 1, 2, 3, 4
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Loss function vs. search metric
- The binary logistic loss (cross-entropy loss) does not 

take into account position of documents
- Ranking metrics in search usually consider position
- In practice, the logistic regression metrics & ranking 

metrics generally agree until AUC gets very close to 1
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LTB is not intended to replace LTR 😊
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Presentation resources
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https://stageapp.getguru.com/card/ijR4gaeT/Learning-to-Boost-Presentation-Resources-Haystack-Conference-2021


getguru.com/careers 

● Sr. Search Engineer
● Sr. Machine Learning Engineer
● Sr. Full Stack Engineer
● Sr. Backend Engineer
● Sr. Frontend Engineer
● …

Based in Philadelphia, San Francisco, or remote!

We are hiring!
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https://www.getguru.com/careers


Thank you!
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