
Semantic Product Search
Simon Hughes PhD, Principal Data Scientist (Core Search), Home Depot

Talk Outline

• Challenges of Building a Semantic Product Search Engine

• Neural IR (Content Based Matching)
• Metric Learning
• Tokenization approaches
• Neural architectures for semantic search
• Mining for Training Data

• Extreme Multi-Label Classification (Classification Approaches)
• Definition of the problem
• Application to semantic product search (Amazon)

• System architecture for combining multiple retrieval models

*Please note that any opinions shared in this talk are my own, and do not necessarily reflect those of Home Depot.

2

Challenges of Building a Product Search Engine

▪ Wide variety of query types:
▪ Dimension queries

▪ Users specify dimensions in a variety of ways
▪ E.g. 24 x 8 house vent, 24 inch by 8 inch house vent, 8 H by 24 W house vent

▪ Non product queries
▪ E.g. how do I install a toilet?

▪ ID queries (SKU number, Model number, etc)
▪ IDs have no semantic meaning

▪ Typos
▪ Non-English queries
▪ Etc

▪ Synonyms
▪ Vocabulary miss match problem
▪ Colloquial Terms

▪ E.g. Industry jargon
▪ SKU variants (size, dimension, color, etc)

▪ Search engine should match variants of matching products only if they match attributes specified in the query
▪ Out of stock

▪ Need to match alternative products when matching products unavailable

Challenges of Building a Product Search Engine

▪ For most sites, queries follow Zipfian distribution (power law distribution)

*For illustration purposes only, not an actual chart based on our data

Head

Mid

Tail Long Tail

Volume

Rank (queries sorted by volume)

Semantic Search Sweet Spot

A Brief History of Information Retrieval

XMC

Popularity of Neural IR Over Time

From Bhaskar Mitra on Twitter - https://twitter.com/UnderdogGeek/status/1288556021414277120

https://twitter.com/UnderdogGeek/status/1288556021414277120

Retrieve (Match) then Re-Rank

▪ Traditional keyword (BM25) search:
▪ Boolean Retrieval

▪ Which set of documents matches some or all of the query keywords?
▪ Leverages inverted index and bitwise operations for speed
▪ Determines which documents match, ignores relative document ordering

▪ Re-Rank
▪ Matching set of documents re-ranked using Okapi BM25 scoring / tf.idf
▪ Different fields usually given different weighting
▪ Boost queries and function queries used to implement business rules

▪ Machine Learning Semantic Search:
▪ ML Driven Retrieval

▪ One or more retrieval model(s) -> initial match set
▪ Models optimize for recall (reduce false negatives)
▪ Leverages approximate KNN search algorithms

▪ Re-Rank
▪ Match set passed through one or more cascading LTR models
▪ Models optimize for precision (reduce false positives)

▪ In this talk I will focus on models for matching (retrieval), which is mainly where the semantic matches occur

Neural IR and Metric Learning

▪ Neural IR models learn a similarity function between the query and the product
▪ Usually this takes the form of ‘Embedding Based Retrieval’ – a vector is generated for the query and the

product
▪ The neural model maximizes the similarity between queries and purchased products, and minimizes the

similarity between queries and irrelevant products

Left image taken from – ‘Neural Models for Information Retrieval’ - https://arxiv.org/pdf/1705.01509.pdf, p11

Query Vector

Product Vector

▪ Retrieval is then done using approximate K-nearest
neighbor search
▪ Specialized algorithms such as HNSW speed up

KNN from linear to sub-linear time complexity at cost
of accuracy

https://arxiv.org/pdf/1705.01509.pdf

Tokenization for Neural IR Models

▪ More traditional approaches still common:
▪ Unigram, bigram, character trigram
▪ More used in simpler models such as average embeddings models or feed forward models (e.g. DSSM)

▪ Trainable tokenizers – Subword Tokenization
▪ Used in language models (e.g. BERT) and machine translation models
▪ Typically used with more complex models such as transformers (and not models using average pooling or similar)
▪ Uses a compression algorithm to break words into character sequences so as to optimize data compression
▪ This results in more common character sequences producing longer sub-word pieces, while rarer sequences broken

into shorter sequences
▪ Example algorithms

▪ BPE (Byte pair encoding)
▪ Language modeling variants – WordPiece (BERT) and SentencePiece (ALBERT, XLNet)

▪ Typo correction?
▪ Sub word tokenization and character ngrams can make the model more robust to typos and noise in the query terms
▪ A spell checker may also be used at training and inference time

Handling Rare and ‘Out of Vocabulary’ Tokens

▪ Machine learning models can only typically learn to represent tokens seen in the training data (‘in vocabulary’)
▪ We need to determine how to handle unseen words – ‘Out of Vocabulary’ tokens, which will otherwise be ignored
▪ This limitation does not exist in traditional keyword retrieval, which can match any token occurring in any document

Sources of OOV Tokens:
▪ Typos in query terms
▪ Very rare (long tail) queries

Solutions
▪ Sub-Word Tokens

▪ Using either a sub-word tokens or character ngrams
▪ This requires the sub-word units to carry some semantic meaning, similar idea to stemming or lemmatization
▪ This does not work well for proper nouns and other terms with meaningless sub-word tokens
▪ E.g. see DSSM paper (Microsoft 2013) - https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2013_DSSM_fullversion.pdf

▪ Hashing
▪ Each OOV token is hashed into a bucket, the bucket is assigned an embedding and treated like a special token
▪ Works with any type of token, however, Hash collisions can result in false positives
▪ E.g. see ‘Semantic Product Search’ paper (Amazon 2019) - https://arxiv.org/pdf/1907.00937.pdf for more details

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2013_DSSM_fullversion.pdf
https://arxiv.org/pdf/1907.00937.pdf

Siamese Neural Networks

▪ Early neural network approaches for learning similarity
functions

▪ Example shown on the right is used in Home Depot to
learn substitutable items for alternative recommendations

▪ The model consists of a single encoder that takes tokens
from a product’s title and description and learns an
embedding vector over the content

▪ The model is trained to maximize the cosine similarity
between similar items (positive pairs), and minimize the
cosine similarity between dissimilar items (randomly
sampled ‘negative’ pairs)

▪ The model is called a ‘Siamese’ network as each
encoder is identical (Siamese twin), and has the same
learned parameters

RecSys ‘19 – ‘Product collection recommendation in online retail’
https://dl.acm.org/doi/10.1145/3298689.3347003 (HomeDepot)

https://dl.acm.org/doi/10.1145/3298689.3347003

Deep Structured Semantic Model (DSSM) – Microsoft (2013)

DSSM paper - https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2013_DSSM_fullversion.pdf

▪ DSSM model from
Microsoft

▪ An early Siamese network

▪ One of the first neural IR
models

▪ Model is a feed forward
neural network

▪ Original model uses
character ngrams as the
input layer (‘word hashing’)

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/cikm2013_DSSM_fullversion.pdf

Two Tower Neural Networks

Figure taken from ‘Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations:’
- https://dl.acm.org/doi/fullHtml/10.1145/3366424.3386195 (Google – Play App Recommendations System)

▪ Has a separate query and document encoder

▪ This allows the model to use different
features for the product and the query

▪ The token embedding layer may or may not
be shared between encoders

▪ See also JD.Com paper for an e-commerce
example -
https://arxiv.org/pdf/2006.02282.pdf

https://dl.acm.org/doi/fullHtml/10.1145/3366424.3386195
https://arxiv.org/pdf/2006.02282.pdf

Generating Training Data from the Click Stream

Mining Training Data Signals

Purchases Clicks Random Docs

Positive Signals? Negative Signals?
Skipped Docs

▪ The research argues that some random negatives are needed to differentiate the hard negative cases that are
close to the query (e.g. skipped above) from the majority of documents that are not a match at all – easy
negatives

▪ See also ’Embedding-based Retrieval in Facebook Search’ - https://arxiv.org/abs/2006.11632

https://arxiv.org/abs/2006.11632

Hard and Soft Negative Mining

▪ The neural model itself can be used to mine
for hard negatives from the unclicked
documents (similar to active learning)

▪ Two key approaches:
▪ Local - mini-batch
▪ Global hard negative mining

▪ It is important that hard negatives are
chosen carefully:
▪ Q = cordless circular saw

▪ HN = circular saw without cord

▪ HN = corded circular saw

Hard negatives

Soft negatives

Easy negatives

Query

Positives

Content Based Vs Behavioral Models

▪ Content Based Models
▪ The token based neural IR models learn semantic representations of documents from their content for use

in document retrieval
▪ Any product can be matched, including those with little or no user behavior signals (‘cold start’ documents)

▪ Behavioral Models
▪ A different formulation treats the problem as a classification problem - given a query, predict the products

purchased
▪ These models rely on user behavior data rather than content

▪ Note – both model types are typically trained on implicit signals derived from the click stream

Extreme Multi-Label Classification (XMC)

• Extreme - The model is predicting a very large label space (100k to Millions)
• Multi Label Classification – Multiple classes (products) predicted per input (query)
• Image taken from ‘GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification’

https://www.youtube.com/watch?v=4-EtvWlUk9Q

https://www.youtube.com/watch?v=4-EtvWlUk9Q

PECOS Framework (Prediction in Correlated Output Spaces) – Amazon Research

▪ 1. Indexing – PECOS groups labels (products) according to topic
▪ 2. Matching – Matches the instance to the topic (shrinking the search space)
▪ 3. Ranking – Re-ranks labels in the matched topic based on the input features

▪ KDD ‘21 Paper from Amazon - https://arxiv.org/pdf/2106.12657.pdf. Note: many other XMC models exist, e.g. DECAF, SLICE, GalaxC.etc
▪ Image taken from Amazon blog - https://www.amazon.science/blog/applying-pecos-to-product-retrieval-and-text-autocompletion

3 Step PECOS Framework

https://arxiv.org/pdf/2106.12657.pdf
https://www.amazon.science/blog/applying-pecos-to-product-retrieval-and-text-autocompletion

Extreme Multi-Label Learning for Semantic Matching in Product Search

▪ Image taken from Amazon blog - https://www.amazon.science/blog/applying-pecos-to-product-retrieval-and-text-autocompletion
▪ KDD ‘21 Paper from Amazon - https://arxiv.org/pdf/2106.12657.pdf.

▪ Amazon’s XR Linear Model (PECOS framework):

▪ 1. Indexing
▪ Products clustered based on query terms and document

content using hierarchical k-means clustering to create a
Label Tree (see image on right)

▪ 2. Matching
▪ A binary classifier is trained for each node in the tree

(including leaf nodes)
▪ Classifiers take query features as input and predict matching

tree nodes

▪ 3. Ranking
▪ At inference time, a beam search is used to navigate the

label tree, to determine the matching leaf nodes (products)
▪ Matched products are then sorted by the classifier confidence

scores (e.g. probabilities) for the matched labels

https://www.amazon.science/blog/applying-pecos-to-product-retrieval-and-text-autocompletion
https://arxiv.org/pdf/2106.12657.pdf

Extreme Multi-Label Learning for Semantic Matching in Product Search

▪ The model learns an indexing structure using hierarchical k-means, similar to that used to solve some
approximate KNN search problems
▪ See my 2019 HayStack talk on Vector Search - https://haystackconf.com/2019/vectors

▪ Training time was 6 X faster than their best neural model (CDSSM)
▪ Recall@10 was 2 X their best neural model
▪ Inference time - 1.25 ms

Other Extreme Multi Label Learning Methods

▪ The amazon paper discussed is the first application of XMC to search
▪ However there is a large body of work dedicated to this topic – see

http://manikvarma.org/downloads/XC/XMLRepository.html

▪ Many other models exist such as SLICE and Parabel (Microsoft), DECAF, Bonsai, GalaxC, etc.
▪ Not all of these models are tree based, some use approximate KNN search algorithms (e.g. SLICE) to do the

initial matching, followed by a classification layer

https://haystackconf.com/2019/vectors
http://manikvarma.org/downloads/XC/XMLRepository.html

Machine Learning Semantic Search Architecture – Amazon Example

From Amazon Paper: ”Extreme Multi-label Learning for Semantic Matching in Product Search”
-https://arxiv.org/pdf/2106.12657.pdf

https://arxiv.org/pdf/2106.12657.pdf

Machine Learning Semantic Search Architecture – Alibaba Example

From Taobao (Alibaba) Paper: “Embedding-based Product Retrieval in Taobao Search” -
https://arxiv.org/pdf/2106.09297.pdf

Match Set RankingRetrieval

The End

▪Any Questions?

