
Merchscore at Simpletire
A story about the flexibility and performance of
Elastic’s Painless script for customized e-commerce
ranking

About us & SimpleTire

Nate Day - Relevance Engineer at OSC

Marc Pereira - Principal Operations Architect at Simpletire

SimpleTire - We think there’s a better way when it comes to tire
replacement. A way with lots of data, and tech, and smart thinking. From
step one, to step done. A way better experience for tire replacement.
That’s our way. That’s our promise.

Shoutouts

@SimpleTire

Jiten Modi

Kevin Klingelhoefer

Chris Vitale

Chris Daniele

Rich Zapf

Kenny Pratt

@OSC

Dan Worley

Max Irwin

Becky Billingsley

What did we want to Accomplish?

By merchandising our products with a data driven, personalized, testable,

and dynamic real time algorithm we are able to maximize the experience

for the customer and increase our conversion.

Merchandised

● Product is scored based on various attributes important to our users

● Attributes are dynamic and included in real time

● Scores capture product value and drive product sort

● Expand what’s possible with tailored rankings to specific segments

Merchscore noun
/mərCHskȯr/

A multi-component ranking function for search

Balances business and user interests to drive increased conversion

Component
1

👌 ranking for
maximum 💰

Component
2

Component
3

Original Recipe Merchscore
(⭐⭐⭐⭐⭐; 4 reviews)

Prep time:

6 months

User Parts:

❏ Price
❏ Ratings
❏ Reviews

Seller Parts:

❏ Profit
❏ Sales
❏ Distance*

Technical details

Scheduled SQL jobs for index
time inclusion (every 6 hrs)

ES results sorted by resulting
Merchscore

Reasons for migrating to Elasticsearch

Speed

MySQL is slower here

than Elasticsearch

Tooling

Only basic tooling exists

but is not A/B test driven

Batching

Data is calculated in

batches each night;

not in real time

Data

Limited pre-calculated

attributes available for

score calculation

Painless noun
/ˈpānləs/

Painless is a performant, secure scripting language designed specifically
for Elasticsearch. You can use Painless to safely write inline and stored
scripts anywhere scripts are supported in Elasticsearch.

Core principles: Safety, Performance, Simplicity, Flexibility

https://www.elastic.co/guide/en/elasticsearch/reference/master/modules-scripting-painless.html

https://www.elastic.co/guide/en/elasticsearch/reference/master/modules-scripting-painless.html

Step 1: Logic as Painless scripts

Is it possible to encode the business logic into ES?

Ratings score:

Products with an
average rating >
4.9

"script_score": {
 "query": {
 "exists": {"field": "averageRating"}
 },
 "script": {

"source": """
(doc['averageRating'].value > 4.9) ? 1 : 0;
"""

 }
}

Step 1: Painless is flexible

Price score:

Min-max normalized
price by tire size.

Runs a pre-score agg
and pass results in
with params

PRE:
"aggs": {
 "priceMin": {"min": {"field": "price"} },
 "priceMax": {"max": { "field": "price"} }
}

"script_score": {
 "query": { "exists": {"field": "price"} },
 "script": {
 "source": """
double myScore = (1- ((doc['price'].value -
params['priceMin']) / (params['priceMax'] -
params['priceMin']))) * 0.05;

return ((myScore > 0) ? myScore : 0)
 """

 }
}

Step 1: Painless is double jointed

Distance-margin
score:

Products within X miles &
having > Y margin (in
descending order by margin)
Followed by those that are > X
miles or < Y margin (in
ascending order by distance)

Params are passed for user’s
lat/lon, margin and distance
cutoffs

"script_score": {
 "query": {
 "nested": {
 "path": "warehouse",
 "query": {
 "exists": {
 "field": "warehouse"
 }
 }
 }
 },
 "script": {
 "source": """

 def deg2rad(def deg) {
 return (deg * Math.PI) / 180.0;
 }

 def GetDistanceFromLatLon(def lat1, def lon1, def lat2, def lon2) {
 int R = 6371;
 def dLat = deg2rad(lat2-lat1);
 def dLon = deg2rad(lon2-lon1);
 def a = Math.sin(dLat/2) * Math.sin(dLat/2) +
 Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
 Math.sin(dLon/2) * Math.sin(dLon/2);
 def c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
 def d = R * c;
 return Math.round(d * 0.6214);
 }

 double maxMarginUnderLimit = 0;
 double distanceUnderLimit = 0;
 double maxMarginOutsideLimit = 0;
 double distanceOutsideLimit = 0;
 double maxMargin = 0;
 double distance = 0;
 double inverseDistance = 0;

 for (item in params._source.warehouse) {
 double currentMargin = ((doc['price'].value - item.tireCost) / doc['price'].value) * 100;

 distance = GetDistanceFromLatLon(params.fromLat, params.fromLon, item.location.lat, item.location.lon);

 if(distance <= params.distanceLimit && currentMargin >= params.maxMargin) {
 if(currentMargin > maxMarginUnderLimit || maxMarginUnderLimit == 0) {
 maxMarginUnderLimit = Math.round(currentMargin);
 distanceUnderLimit = distance;
 }
 } else {
 if(currentMargin > maxMarginOutsideLimit || maxMarginOutsideLimit == 0) {
 maxMarginOutsideLimit = Math.round(currentMargin);
 distanceOutsideLimit = distance;
 }
 }
 }

 if(maxMarginUnderLimit > 0) {
 maxMargin = maxMarginUnderLimit;
 distance = distanceUnderLimit;
 } else {
 maxMargin = 1;
 distance = distanceOutsideLimit;
 }

 inverseDistance = (99999 - distance)/100000;
 if(inverseDistance < 0) inverseDistance = 0;

 return maxMargin + inverseDistance;
 """
 }

Step 1: recap

Step 2: weight components

Big win for flexibility/testing

Review
Score

Price
Score

Distance
Score

Original
Merchscore

25% 50%25%

Review
Score

Price
Score

Distance
Score

Balanced
Merchscore

33%33% 33%

Step 2: use params to carry weights

Template reuse
FTW

"script_score": {
 "query": {
 "exists": {"field": "averageRating"}
 },
 "script": {
 "source": """

((doc['averageRating'].value > 4.9) ? 1
: 0) * params['weight'];

 """,
"params": {

"weight": 0.25
}

 }
}

Step 3: “index”/compile scripts

Save compile time

Treat it like another
index command

POST scripts/rating_score
{
 "script": {
 "lang": "painless",
 "source": "((doc['averageRating'].value > 4.9) ? 1 : 0)
* params['weight']"
 }
}

GET _search/
{
"script_score": {
 "query": {
 "exists": {"field": "averageRating"}
 },
 "script": {

"id": "rating_score",
"params": {"weight": 0.25}

 }
}

Step 4: “bool should” wraps parts
"bool": {
 "should": [
 {
 "script_score": {
 "query": { "exists": { "field": "averageRating" } }
 },
 "script": {
 "id": "rating_score",
 "params": { "weight": 0.25 }
 }
 }
 },
 {
 "script_score": {
 "query": { "exists": { "field": "price" } }
 },
 "script": {
 "id": "price_score",
 "params": { "weight": 0.25 }
 }
 }
 },
 {
 "script_score": {
 "query": {
 "bool": {

"must": [
 {
 "nested": {
 "path": "warehouse",
 "query": { "exists": { "field": "warehouse" } }
 }
 },
 { "exists": { "field": "price" } }
]} },

 "script": {
 "id": "distance_score",
 "params": { "weight": 0.50 }
 }
 }
 }]
}

Distance score
50%

Ratings score
25%

Price score
25%

A lifted bottom line

+ 3% increase on conversion rate

Source: Monster Truck Vectors by Vecteezy

https://www.vecteezy.com/free-vector/monster-truck
https://www.vecteezy.com/free-vector/monster-truck

Curations: customized clones

Baseline
Merchscore

Curation
Merchscores

Curations: Netflix style browsing

Most Popular
Merchscore

Best Value
Merchscore

...

More lift

+ 1% on conversion rate

Source: @_LiftedTrucks_ on Twitter

https://twitter.com/_LiftedTrucks_/status/1424809008238583814/photo/1

In prod:

Hosting cost on:

+100% CPU
-70% Storage

+15% Cost

https://www.elastic.co/cloud/

In prod: trivia question

https://en.wikipedia.org/wiki/Null_Island

In prod: trivia answer

Null
Island

Personalization
Target specific browsing profiles with specific signals

Layer on a tailored Merchscore as a rescore query

- This is a tweak to the baseline Merchscore designed to elevate
a specific segment of the results

Personalization
Target specific browsing profiles with specific signals

Customers that search for a specific size 235-60r18 but are looking
at different brands:

Tier 1, Brand = Michelin

https://simpletire.com/brands/michelin-tires/energy-saver-a-s

https://simpletire.com/tire-sizes/235-60r18

Tier 3, Brand = Atturo

https://simpletire.com/brands/atturo-tires/aw730

https://simpletire.com/tire-sizes/235-60r18

https://simpletire.com/tire-sizes/235-60r18
https://simpletire.com/brands/michelin-tires/energy-saver-a-s
https://simpletire.com/tire-sizes/235-60r18
https://simpletire.com/brands/atturo-tires/aw730
https://simpletire.com/tire-sizes/235-60r18

User searches for size 235-60r18 without personalization

Personalization

User visits the Michelin brand page or is directed there via an ad.

Personalization

User searches for size 235-60r18 having brand=Michelin

Personalization

User visits the Atturo brand page or is directed there via an ad.

Personalization

User searches for size 235-60r18 having brand=Atturo

Personalization

Personalization

The most lift

+ 5% on conversions with personalization

Source: Grave Digger by Kazvorpal

https://en.wikipedia.org/wiki/Grave_Digger_(monster_truck)#/media/File:Grave-digger-monster-jam-2014.jpg

We are hiring!

simpletire.applytojob.com

Stackable promo!
5% off on top of any promo

HAYSTACK5

Appendix

