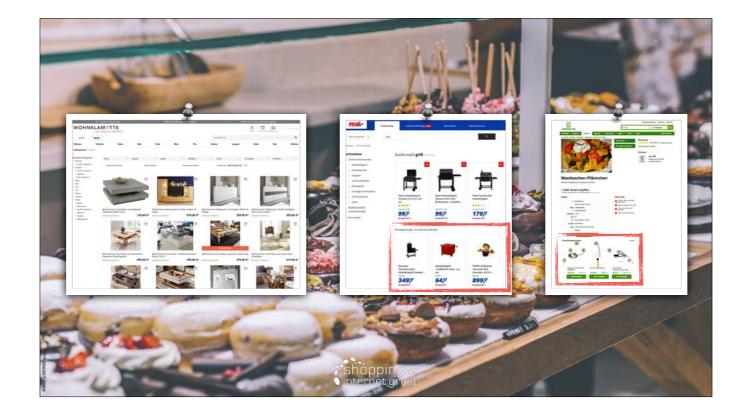
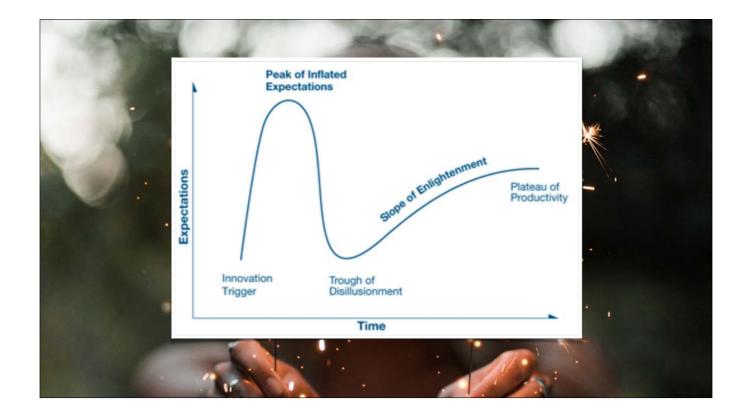


- Here we are with three different views on Learning To Rank
 - Fabian: business view
 - René: feature engineering, IR consultant
 - Torsten: ops & management view



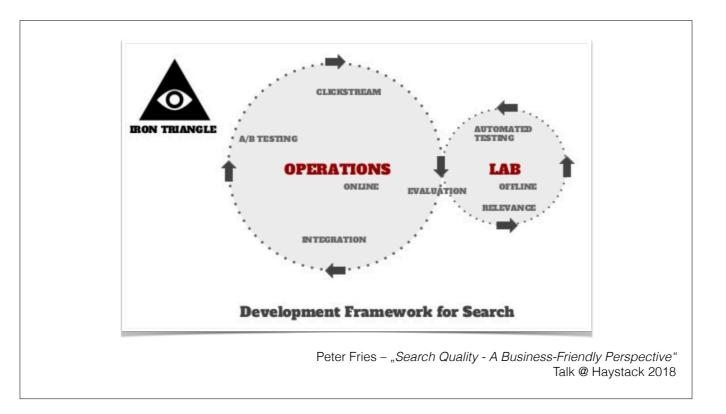
- Shopping24 is part of the OTTO group
 - Not a shop, Google calls us a "comparison shopping service"
 - We ship traffic to e-commerce shops
 - We get paid per click on a product (CPC)
- Three business models
 - Paid search advertising, 95% search traffic
 - Search widget integrated in other websites
 - Semantic widget integration for content sites.

- Search @Shopping24:
 - Apache Solr as search engine
 - >65M products in each Solr collection, ~ 20 collections
 - ~ 30% products change daily
 - 8M unique search terms per month
 - Ranking based on exponentially discounted clicks ...
 - ... which is basically a **self-fulfilling prophecy**

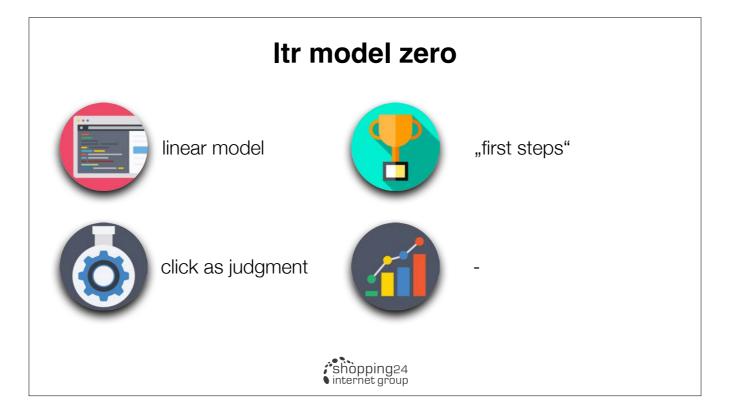


- Machine Learning seems to be at the peak of the hype cycle
 - Results may vary from company to company
 - Even inside a company expectation vary
- So: **Expectation management** towards C-Level is important
 - as well towards team members
 - it's not magic and it's not self-learning

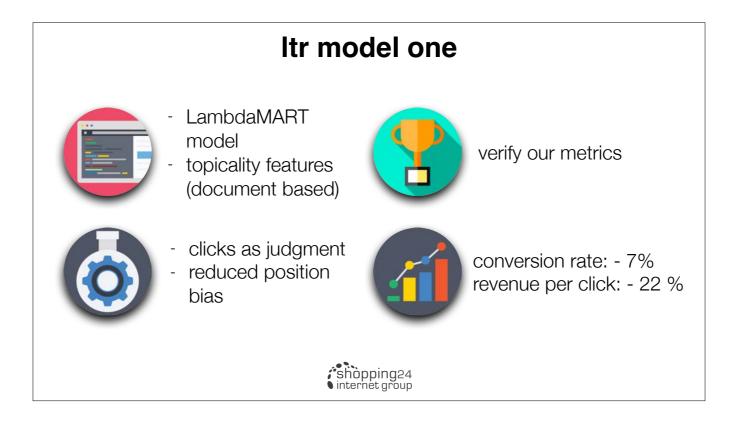
- Our major goal was to eliminate the self-fulfilling prophecy
 - Ranking should be product-ID independent
 - Clicks should serve as judgement only
- Learning To Rank Goals
 - Agnostic to paused or blacklisted products (find products alike)
 - Higher click out rate through more relevant products
 - Higher revenue due to higher click out value



- Peter Fries presented this simple yet effective development framework for search
 - Have your offline development cycle spin way faster than your online cycle
 - Validate your offline metrics through online a/b-Tests
- You cannot stress this enough: Before launching a machine learning project, have your offline feedback cycle and offline metrics ready
- See: "Best Practices of ML engineering": <u>http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf</u>

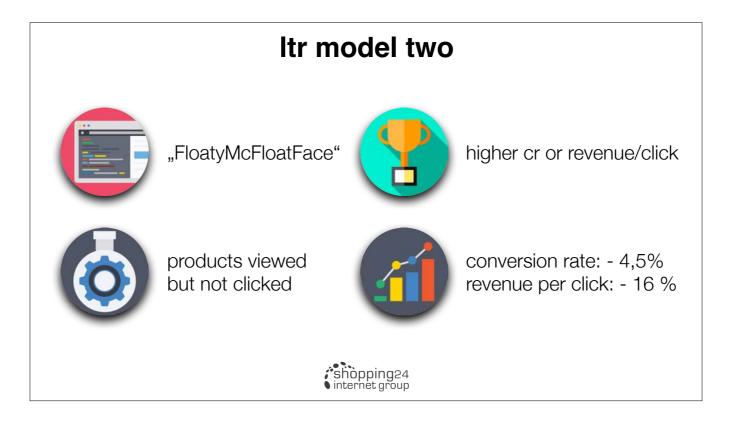


- Let me walk you through some of the major models we built
- Four points of interest
 - Computational changes
 - Jugdmental changes
 - Model and a/b-test goals
 - Overall results
- Model Zero
 - Didn't work at all, not even test-worthy
 - First steps in collecting relevant data
 - Did not aggregate any clicks
 - as we did not have them in place



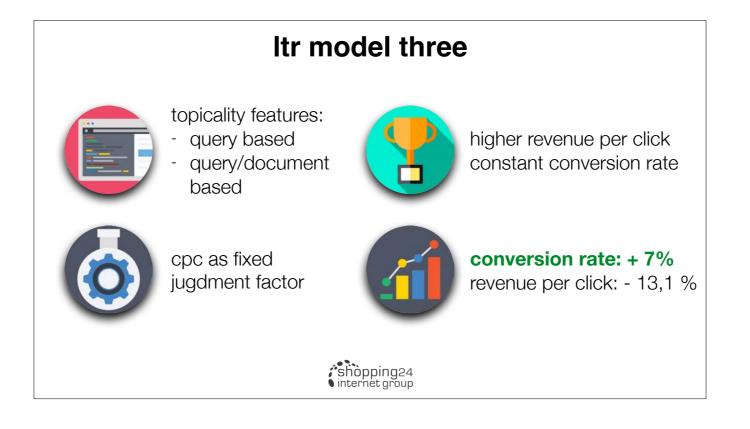
- Model One
 - First model to hit users in an a/b-Test
 - LambdaMART model (Multiple Additive Regression Trees)
 - Major goal was to conclude offline and online metrics
- Not each product has the same click revenue
 - Suprisingly we had a lot of products with an lower cpc above the fold

https://medium.com/@nikhilbd/intuitive-explanation-of-learning-to-rank-and-ranknet-lambdarank-and-lambdamart-fe1e17fac418

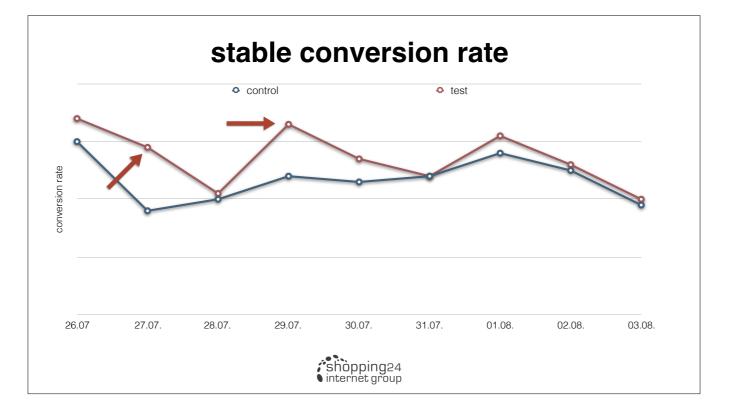


- Model Two

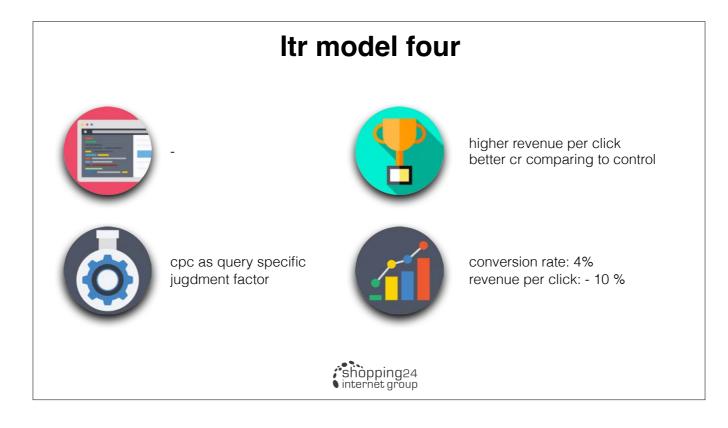
- Very unsatisfied with graded judgment lists as input into Ranklib
- Implemented "FloatyMcFloatFace" to handle float judgments directly
- Added products viewed but not clicked as counterpart to products clicked
- Aimed for higher conversion rate and / or revenue per click



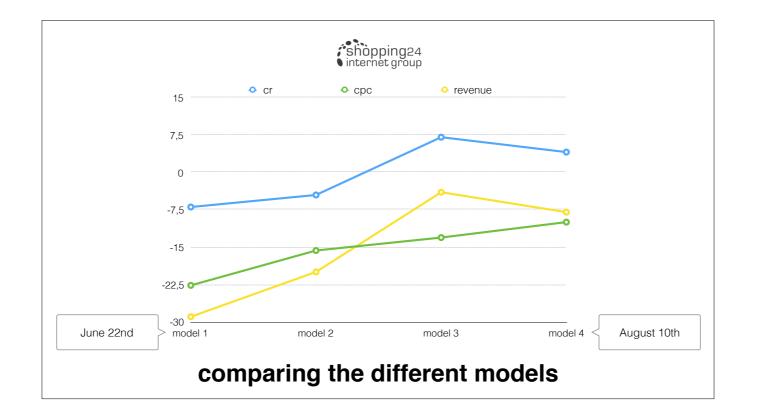
- Model Three
 - Implemented topicality features
 - Used the current product cpc as a fixed jugdment factor
- Saw a better and more stable conversion rate!



- Main goal to be independent for paused or blacklisted products.
- Saw a better and more stable conversion rate!
- Very promisingly
- A important partner had paused a huge amount of products on day 2



- Model four
 - Focus on judgment tweaking towards higher revenue per click
 - No feature changes



- Overall comparism if the four models in online a/b test
- Steady increase in at least one kpi
- Timeline: 6 weeks

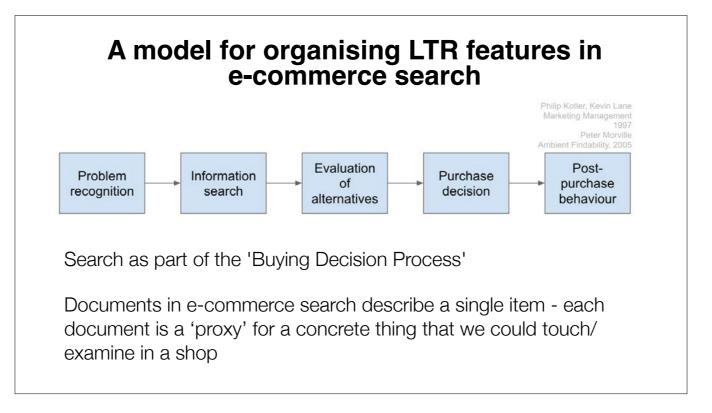
_

Joining the project as a search relevance consultant

shopping 24 has had an advanced search team for many years but still asked for support:

- choice of LTR model
- deriving judgments from clicks
- preparing judgments for RankLib
- LTR feature engineering

- Judgments: dealing with position bias, distinction between seen and unseen documents for zero-click documents
- Judgments in RankLib: graded judgments vs. continous
- Features: Started with: 'Can we just turn ranking factors into features?'



A model for organising LTR features in e-commerce search

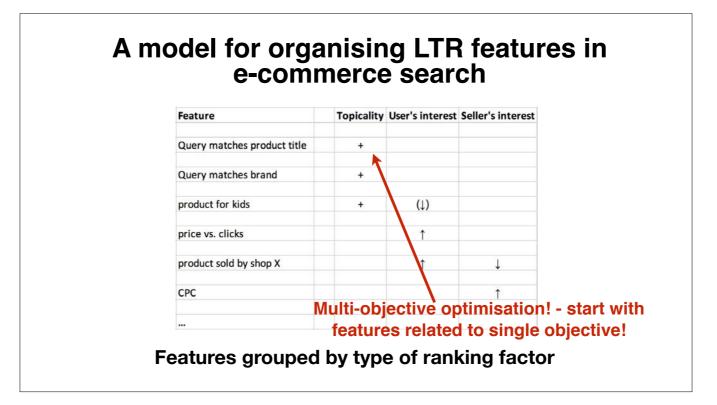
Ranking factors in e-commerce search

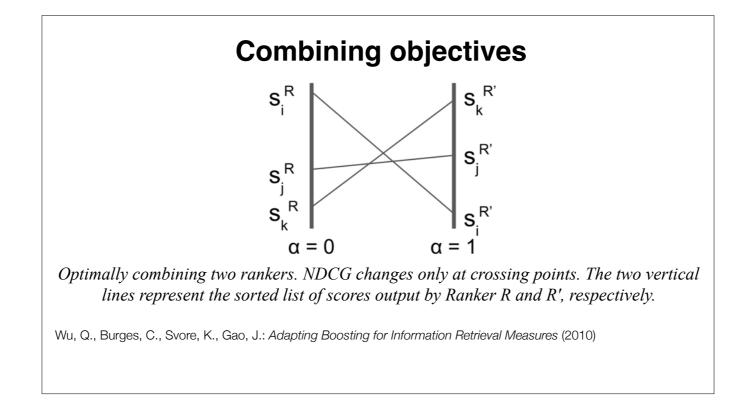
Topicality - identify the product (type) that the user is searching for ('laptop' vs 'laptop backpack')

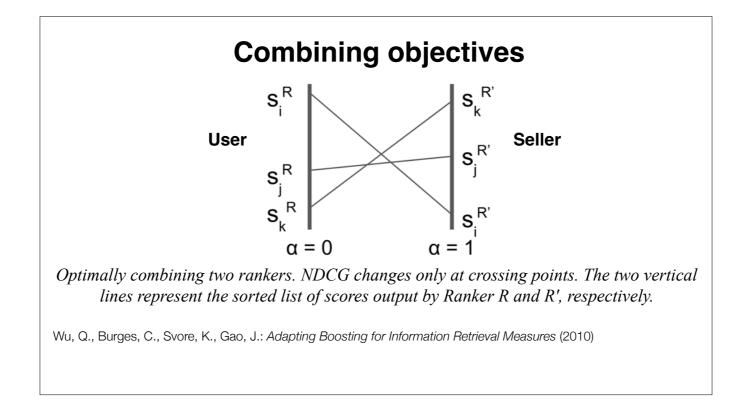
User's relevance criteria (e-commerce/non-ecommerce)

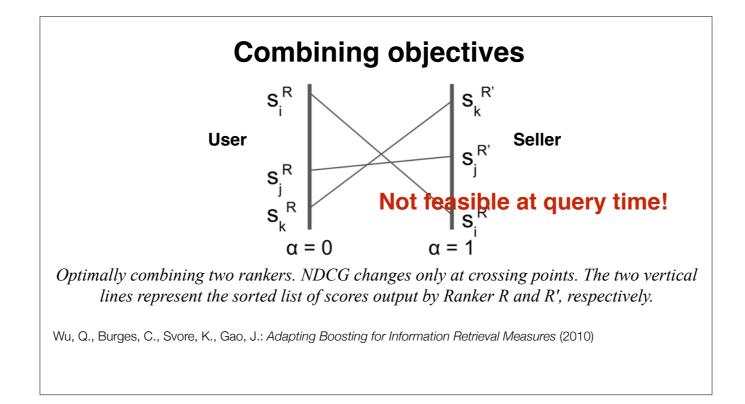
Seller's interests (maximise profit)

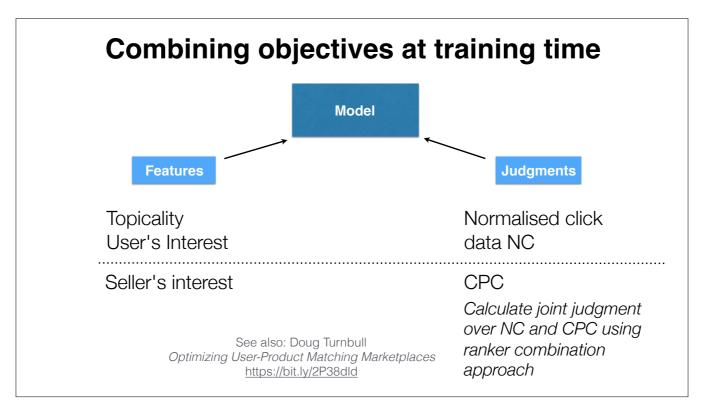
Feature	Topicality	User's interest	Seller's interes
Query matches product title	+		
Query matches brand	+		
product for kids	+	(1)	
price vs. clicks		1	
product sold by shop X		1	Ļ
CPC			Ť











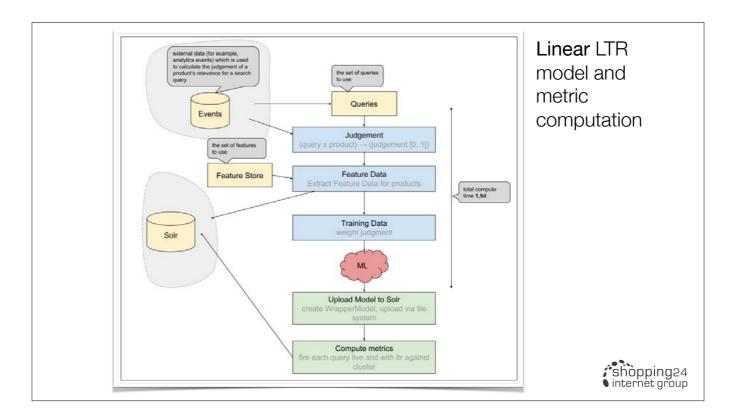
Joining the project as a search relevance consultant

shopping 24 has had an advanced search team for many years but still asked for support:

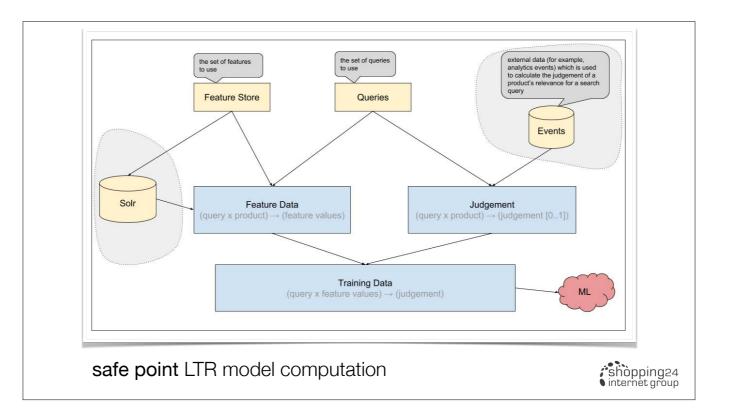
- choice of LTR model
- deriving judgments from clicks
- preparing judgments for RankLib
- LTR feature engineering

- Search relevance consultant to bring in IR knowledge that would be hard/take long to build in search team

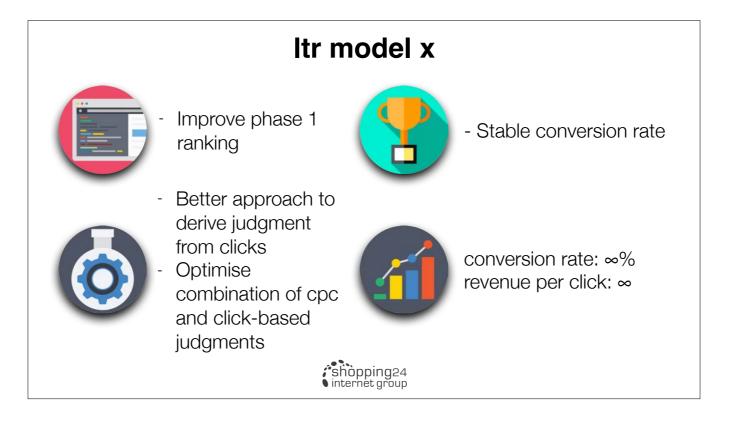
- Scaling learning to rank processes
 - In order to get offline metrics to work, you need to compute models faster and in parallel
 - Ideally you compute a model and receive an email with it's overall metrics
- Building a model in RankLib is not a problem
 - Modified RankLib to handle float judgments ("FloatyMcFloatFace")
 - Data collection, normalization and cleansing is tedious
 - All models built based on erroneous data (different problems)



- Linear model computation
 - 4 main artifacts (query set, judgment, feature data and final training data)
 - Took 1,5 days to compute for each model
 - Judgment computation and feature gathering very costly
 - Unfortunately not (yet) scalable via CPU or GPU
 - "Easy" to process as batch job in Kubernetes
- WrapperModel in Solr eases pain of Zookeeper file size limit
 - Distribute models via file systems to all nodes



- When iterating models ...
 - ... change one thing at a time (features or judgment)
 - In linear computation mode all artifacts have to be re-computed
- Better: use "safe-points" to continue work with pre-computed artifacts
 - Split feature data from judgment computation
 - Store artifacts for a given configuration in S3 (or CEPH)
 - Way faster overall compute time
- Example: When working on features, use pre-computed judgment and query set to build training data
- Periodically rebuild everything



- Further explorations
- LTR is applied as re-ranking in Solr (and Elasticsearch or Vespa)
 - So-called Phase 2 ranking
 - Top n documents get re-ranked
 - Phase 1 ranking choses those documents
 - Need to improve phase 1 ranking
- Are clicks recorded from our previous rankings a valid judgment?
 - A different ranking approach will lead to worse metrics
 - Are we optimizing a local maximum?
 - How can we start ranking "outside the box"?

