
Learning Learning to Rank

Mehrfach bester Arbeitgeber Deutschlands im Handel und Konsum laut Arbeitgeber-Ranking

Social Media Liebling
mit über

360.000
Facebook Fans

Fabian Klenk
Product Owner Search
shopping24 internet group
@der_fabe

René Kriegler
Freelance Search Consultant
@renekrie
MICES (Organiser, mices.co)
Querqy (Maintainer, github.com/renekrie/querqy)

Torsten Bøgh Köster
CTO shopping24 internet group
@tboeghk
Search Technology Meetup Hamburg Organiser
Solr Bmax Query Parser Maintainer

- Here we are with three different views on Learning To Rank

- Fabian: business view

- René: feature engineering, IR consultant

- Torsten: ops & management view

http://mices.co
https://github.com/renekrie/querqy

Photo by Fancycrave on U
nsplash

- Shopping24 is part of the OTTO group

- Not a shop, Google calls us a „comparison shopping service“

- We ship traffic to e-commerce shops

- We get paid per click on a product (CPC)

- Three business models
- Paid search advertising, 95% search traffic

- Search widget integrated in other websites

- Semantic widget integration for content sites.

https://unsplash.com/photos/MkFTAO4lROs?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/stores?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Photo by spaceX

- Search @Shopping24:

- Apache Solr as search engine

- >65M products in each Solr collection, ~ 20 collections

- ~ 30% products change daily

- 8M unique search terms per month

- Ranking based on exponentially discounted clicks …

- … which is basically a self-fulfilling prophecy

- Machine Learning seems to be at the peak of the hype cycle

- Results may vary from company to company

- Even inside a company expectation vary

- So: Expectation management towards C-Level is important

- as well towards team members

- it’s not magic and it’s not self-learning

Photo by G
rant R

itchie on U
nsplash

- Our major goal was to eliminate the self-fulfilling prophecy

- Ranking should be product-ID independent

- Clicks should serve as judgement only

- Learning To Rank Goals

- Agnostic to paused or blacklisted products (find products alike)

- Higher click out rate through more relevant products

- Higher revenue due to higher click out value

https://unsplash.com/photos/Jd2fqoX3z_0?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/goals?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Peter Fries – „Search Quality - A Business-Friendly Perspective“
Talk @ Haystack 2018

- Peter Fries presented this simple yet effective development framework for search

- Have your offline development cycle spin way faster than your online cycle

- Validate your offline metrics through online a/b-Tests

- You cannot stress this enough: Before launching a machine learning project, have your offline feedback cycle and offline metrics ready

- See: „Best Practices of ML engineering“: http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf

ltr model zero

click as judgment

linear model

-

„first steps“

- Let me walk you through some of the major models we built

- Four points of interest

- Computational changes

- Jugdmental changes

- Model and a/b-test goals

- Overall results

- Model Zero

- Didn’t work at all, not even test-worthy

- First steps in collecting relevant data

- Did not aggregate any clicks

- as we did not have them in place

ltr model one

- clicks as judgment
- reduced position

bias

- LambdaMART
model

- topicality features
(document based)

conversion rate: - 7%
revenue per click: - 22 %

verify our metrics

- Model One

- First model to hit users in an a/b-Test

- LambdaMART model (Multiple Additive Regression Trees)

- Major goal was to conclude offline and online metrics

- Not each product has the same click revenue

- Suprisingly we had a lot of products with an lower cpc above the fold

https://medium.com/@nikhilbd/intuitive-explanation-of-learning-to-rank-and-ranknet-lambdarank-and-lambdamart-fe1e17fac418

ltr model two

products viewed
but not clicked

„FloatyMcFloatFace“

conversion rate: - 4,5%
revenue per click: - 16 %

higher cr or revenue/click

- Model Two

- Very unsatisfied with graded judgment lists as input into Ranklib

- Implemented „FloatyMcFloatFace“ to handle float judgments directly

- Added products viewed but not clicked as counterpart to products clicked

- Aimed for higher conversion rate and / or revenue per click

ltr model three

cpc as fixed
jugdment factor

topicality features:
- query based
- query/document

based

conversion rate: + 7%
revenue per click: - 13,1 %

higher revenue per click
constant conversion rate

- Model Three

- Implemented topicality features

- Used the current product cpc as a fixed jugdment factor

- Saw a better and more stable conversion rate!

co
nv

er
si

on
 ra

te
26.07 27.07. 28.07. 29.07. 30.07. 31.07. 01.08. 02.08. 03.08.

control test

stable conversion rate

Photo by kazuend on U
nsplash

- Main goal - to be independent for paused or blacklisted products.

- Saw a better and more stable conversion rate!

- Very promisingly

- A important partner had paused a huge amount of products on day 2

https://unsplash.com/photos/tsMVvBbpyGM?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/winner?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

ltr model four

cpc as query specific
jugdment factor

-

conversion rate: 4%
revenue per click: - 10 %

higher revenue per click 
better cr comparing to control

- Model four

- Focus on judgment tweaking towards higher revenue per click

- No feature changes

comparing the different models

-30

-22,5

-15

-7,5

0

7,5

15

model 1 model 2 model 3 model 4

cr cpc revenue

June 22nd August 10th

- Overall comparism if the four models in online a/b test

- Steady increase in at least one kpi

- Timeline: 6 weeks

-

Joining the project as a search
relevance consultant

shopping 24 has had an advanced search team for many years
but still asked for support:

- choice of LTR model

- deriving judgments from clicks

- preparing judgments for RankLib

- LTR feature engineering

- Judgments: dealing with position bias, distinction between seen and unseen documents for zero-click documents

- Judgments in RankLib: graded judgments vs. continous

- Features: Started with: 'Can we just turn ranking factors into features?'

A model for organising LTR features in
e-commerce search

Search as part of the 'Buying Decision Process'

Documents in e-commerce search describe a single item - each
document is a ‘proxy’ for a concrete thing that we could touch/
examine in a shop

A model for organising LTR features in
e-commerce search

Ranking factors in e-commerce search

Topicality - identify the product (type) that the user is searching
for (‘laptop’ vs ‘laptop backpack’)

User’s relevance criteria (e-commerce/non-ecommerce)

Seller’s interests (maximise profit)

A model for organising LTR features in
e-commerce search

Features grouped by type of ranking factor

A model for organising LTR features in
e-commerce search

Features grouped by type of ranking factor

Multi-objective optimisation! - start with
features related to single objective!

Combining objectives

Optimally combining two rankers. NDCG changes only at crossing points. The two vertical
lines represent the sorted list of scores output by Ranker R and R', respectively.

Wu, Q., Burges, C., Svore, K., Gao, J.: Adapting Boosting for Information Retrieval Measures (2010)

Combining objectives

Optimally combining two rankers. NDCG changes only at crossing points. The two vertical
lines represent the sorted list of scores output by Ranker R and R', respectively.

Wu, Q., Burges, C., Svore, K., Gao, J.: Adapting Boosting for Information Retrieval Measures (2010)

User Seller

Combining objectives

Optimally combining two rankers. NDCG changes only at crossing points. The two vertical
lines represent the sorted list of scores output by Ranker R and R', respectively.

Wu, Q., Burges, C., Svore, K., Gao, J.: Adapting Boosting for Information Retrieval Measures (2010)

User Seller

Not feasible at query time!

Combining objectives at training time

Topicality
User's Interest

Model

Features Judgments

Normalised click
data NC

Seller's interest CPC
Calculate joint judgment
over NC and CPC using
ranker combination
approach

See also: Doug Turnbull
Optimizing User-Product Matching Marketplaces

https://bit.ly/2P38dld

https://opensourceconnections.com/blog/2017/07/04/optimizing-user-product-match-economies/

Joining the project as a search
relevance consultant

shopping 24 has had an advanced search team for many years
but still asked for support:

- choice of LTR model

- deriving judgments from clicks

- preparing judgments for RankLib

- LTR feature engineering

- Search relevance consultant to bring in IR knowledge that would be hard/take long to build in search team

Photo by pine watt on Unsplash

- Scaling learning to rank processes

- In order to get offline metrics to work, you need to compute models faster and in parallel

- Ideally you compute a model and receive an email with it’s overall metrics

- Building a model in RankLib is not a problem

- Modified RankLib to handle float judgments („FloatyMcFloatFace“)

- Data collection, normalization and cleansing is tedious

- All models built based on erroneous data (different problems)

https://unsplash.com/photos/3_Xwxya43hE?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/scale?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Linear LTR
model and
metric
computation

- Linear model computation

- 4 main artifacts (query set, judgment, feature data and final training data)

- Took 1,5 days to compute for each model

- Judgment computation and feature gathering very costly

- Unfortunately not (yet) scalable via CPU or GPU

- „Easy“ to process as batch job in Kubernetes

- WrapperModel in Solr eases pain of Zookeeper file size limit

- Distribute models via file systems to all nodes

safe point LTR model computation

- When iterating models …

- … change one thing at a time (features or judgment)

- In linear computation mode all artifacts have to be re-computed

- Better: use „safe-points“ to continue work with pre-computed artifacts

- Split feature data from judgment computation

- Store artifacts for a given configuration in S3 (or CEPH)

- Way faster overall compute time

- Example: When working on features, use pre-computed judgment and query set to build training data

- Periodically rebuild everything

ltr model x

- Better approach to
derive judgment
from clicks

- Optimise
combination of cpc
and click-based
judgments

- Improve phase 1
ranking

conversion rate: ∞%
revenue per click: ∞

- Stable conversion rate

- Further explorations

- LTR is applied as re-ranking in Solr (and Elasticsearch or Vespa)

- So-called Phase 2 ranking

- Top n documents get re-ranked

- Phase 1 ranking choses those documents

- Need to improve phase 1 ranking

- Are clicks recorded from our previous rankings a valid judgment?

- A different ranking approach will lead to worse metrics

- Are we optimizing a local maximum?

- How can we start ranking „outside the box“?

Photo by Em
ily M

orter on U
nsplash

@der_fabe | @renekrie | @tboeghk

https://unsplash.com/photos/8xAA0f9yQnE?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/question?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

