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We are...

● Matthieu Pons
○ Backend engineer at reBuy

● Sadat Anwar
○ Backend Search Engineer (ex- reBuy)
○ Search engineer Delivery Hero
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reBuy

● re-commerce shop

● Media and consumer 
electronics

● Volatile availability
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Context

● Replace our 3rd party 
provider

● Very little product reviews

● Anonymous user sessions

● Different type of 
recommendations

55



Context

● First tried Product/User embeddings
○ Satisfying results
○ Problems with implicit and sparse signals

● Moved on to Prod2Vec with gensim
○ Worked much better
○ No more problem with implicit signals

Product User

...
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Problem

● Prod2Vec is “too good” for 
our add-to-cart sessions

● Comes at a cost (time, GPUs, 
ops)

● Sequence based is the right 
track
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Sequential Rules Method - Intuition

A -> R -> F -> C -> G -> E -> H

A -> C -> H -> G -> E -> D -> I
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1st order Markov chain:

p(G|C) = .5

p(H|C) = .5



Sequential Rules Method - Intuition
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A -> R -> F -> C -> G -> E -> H

A -> C -> H -> G -> E -> D -> I

C: [A, H, G, E, R, D, I]

Simple Co-occurrences:



Sequential Rules Method - Intuition
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Sequential Rules Method - Intuition

5       4      3

5       4       3       2       1

A -> R -> F -> C -> G -> E -> H

A -> C -> H -> G -> E -> D -> I
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C: [G: 9, H: 8, E: 7, D: 2, I: 1] 

Sequential Rules:



Sequential Rules - results at rebuy

Hit Rate on add to cart sessions:

HR @5 HR @10

Provider .230 .359

Prod2Vec .167 .241

Sequential Rules .245 .372
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Sequential Rules - improvements

Using a SR on itself:

A: [R, F,..., C, Q]

B: [G, H,..., C, E]

D: [M,..., C, K, N]

D: [M, C, R,..., G]

Original recommendations for D

D re-arranged, based on session

Recommendations 
for one user 
session 
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Sequential Rules - improvements

Results of using a SR on itself:

HR @5 HR @10

Provider .230 .359

Prod2Vec .167 .210

SR - simple .245 .372

SR - many2many .257 .416
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Sequential Rules - pros and cons

Pros:

● Explainable

● Only one pass through data 0(n)
○ Fast training (~10 min. for 10M sessions)

● Can be written as a map-reduce

● Versatile
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Sequential Rules - pros and cons

Cons:

● Overfit on small datasets

● No seasonality

● Not good at replaying sequences

A -> R -> F -> C -> Q 

A -> G -> H -> C -> E

A -> L -> M -> C -> S

A: [C: 9, ...]
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Sequential Rules - original research

M. Ludewige, D. Jannach: Evaluation of Session-based Recommendation 
Algorithms, Oct.2018, https://arxiv.org/pdf/1803.09587.pdf

I.Kamehkhosh, M. Ludewige, D. Jannach: A Comparison of Frequent 
Pattern Techniques and a Deep Learning Method for Session-Based 
Recommendation, 2017, http://ceur-ws.org/Vol-1922/paper10.pdf
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https://arxiv.org/pdf/1803.09587.pdf
http://ceur-ws.org/Vol-1922/paper10.pdf


SR method - original research
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M. Ludewige, D. Jannach: Evaluation of Session-based Recommendation Algorithms, 5.1.1 Table 3



Search 
Applications 



Search Applications

1. (Collaborative) Spell Check
2. Similar Search
3. Hybrid Search and Recommendation

2020



Status Quo

● Bad query and results

● Ambiguous situation

● Unsatisfying customer 
experience
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Status Quo

● Bad query and results

● Incorrect spellcheck

● Unsatisfying customer 
experience
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Collaborative Spell Check

● Solr/Elasticsearch only do text spell check

● min-prefix is too constrictive 

○ mintendo -> nintendo

● Word2Vec clustered spelling errors
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Collaborative Spell Check



How to use SR for search

huwai p20 pro -> angebot handy -> handy angebot -> huawei -> huawei p20 pro

huwai p20 pro -> huwai -> huawei

5 4 3 2

5 4

huwai p20 pro -> [huawei: 7, ...]

Would give
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● Applied on enough 
sessions

● Works on long queries

● Correct error at first 
position

26

Collaborative Spell Check



Status Quo

● Correct query and results

● Disappointing from a 
customer point of view

● Dead-end
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Similar searches
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Similar Search

● Very little data preprocessing 
needed

● Increase user engagement

● How to differentiate between 
spellcheck and similar search?
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Status Quo

● Correct query and results

● Wasted real estate

● Looks broken

● Unsatisfying customer 
experience
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Hybrid Search and Recommendation
Nash bridges | louis de funes | p#1735350 | p#3112824 | p#1492633 | p#1492632 | p#7238 | 
p#9177463 | p#1166173 | Rabbi jakob | rabbi jacob | p#7483 | james bond
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● Consider not only search terms, but also products

● Boost products that customers interact with 
(Learn-to-Rank?) 



Hybrid Search and Recommendation 
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Recommend related products when page is not full



Hybrid Search and Recommendation
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Boost products on ambiguous queries



Hybrid Search and Recommendation
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Recommend products on bad queries 



Q & A
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Thank You! 
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Hybrid Search and Recommendation


