
Ranking article comments
using reinforcement learning

Lester Solbakken | October 28th 2019

vespa.ai

Encourages meaningful discussion?

 Vespa at

Hundreds of Vespa
applications (Flickr, Tumblr,
TechCrunch, Huffington
Post, Aol, Gemini, Engadget,
Yahoo News Sports Finance
Mail etc.):

● serving over a billion users,

● hundreds of thousands of
queries per second,

● billions of content items.

Personalized article
recommendations

Personalized
real-time native ads

selection

Searching
20+ billion images

Select comments
using neural nets and
reinforcement learning

Around 30 developers in Trondheim, Norway

 Vespa team

Fast Search & Transfer
(alltheweb.com)

1998

Overture

Yahoo

2004 2017 2019

Oath

Verizon
Media
Group

Vespa
Open Source

Baseline - existing solution

Comments found on many Yahoo
properties such as Yahoo Finance,
Yahoo News, and Yahoo Sports

● ~ 1 billion comments stored
● ~ 12.000 queries per second
● 2x that for updates

Some articles have > 100.000
comments!

https://blog.vespa.ai/post/182759620076/serving-article-comments-using-reinforcement

https://blog.vespa.ai/post/182759620076/serving-article-comments-using-reinforcement

Potential features Wilson score*: probability of comment
being overwhelmingly liked by all users

(*) Zhang et. al. 2011. How to Count Thumb-Ups and Thumb-Downs: User-Rating Based Ranking of Items from an Axiomatic Perspective.

Community How users interacted with comment

Comment Relevance to topic, moderation

Author Reputation

User Preferences

Other Time
Conversation AI (https://conversationai.github.io)

https://conversationai.github.io

Previous ranking algorithm

Community features

Comment features

Author features

User features

Other features

Final score

Hardcoded weighting

Scoring

Question Answer

Ranking

Learning

Scoring

Question Answer

How should features be
combined intelligently?

Ranking How can we overcome
position bias?

Learning How do we learn directly
from user behavior?

Scoring

Question Answer

How should features be
combined intelligently?

Neural network over
comment features

Ranking How can we overcome
position bias?

Learning How do we learn directly
from user behavior?

Scoring

Question Answer

How should features be
combined intelligently?

Neural network over
comment features

Ranking How can we overcome
position bias?

Exploration with sampling

Learning How do we learn directly
from user behavior?

Scoring

Question Answer

How should features be
combined intelligently?

Neural network over
comment features

Ranking How can we overcome
position bias?

Exploration with sampling

Learning How do we learn directly
from user behavior?

Reinforcement learning with
dwell time rewards

Reinforcement learning in general

RL is a general-purpose framework
for artificial intelligence
● RL is for an agent with the

capacity to act
● Each action influences the

agent’s future state
● Success is measured by a

scalar reward signal
● Select actions to maximise

future reward

Multi-arm bandits with context

Reward r is conditioned on chosen
action - feedback is partial

Canonical example: ad serving

Contextual bandits

Source: Microsoft research

features x

score v = f(x)

action a

}policy

Sometimes called contextual semibandits*

Importance weighted sampling to construct unbiased estimates for rewards

}
Contextual bandits in ranking

features x

score v = f(x)

ranking

policy

(*) Krishnamurthy, Agarwal, Dudík 2016. Contextual Semibandits via Supervised Learning Oracles.

Policy chooses a
ranking, not an action

Comment

Scoring

Comment

Scoring

Features

Community

Comment

Author

User

Other

Comment

Scoring

Features Model

Community

Comment

Author

User

Other

Comment

Scoring

Features Model Positive score

Community

Comment

Author

User

Other

Comments

Ranking
Scores

Comments

Ranking
Scores Sampling

Comments

Ranking
Scores Sampling Ranking

Comments

Ranking
Scores Sampling Ranking

Comments

Ranking
Scores Sampling Ranking

Comments

Ranking
Scores Sampling Ranking

Learning
Model Rankings

Learning
Model Rankings Reward

Learning
Model Rankings Reward Gradient ascent

in direction of expected reward

Learning
Model Rankings Reward Gradient ascent

in direction of expected reward

Learning
Model Rankings Reward Gradient ascent

Can use any reward

in direction of expected reward

Cold start: pre-train neural network to emulate previous ranking

● Gradient ascent with Kendall’s tau coefficient as reward

Off-policy evaluation: interactions are logged as (x, a, r, p), where p is the policy’s
probability of choosing a given x.

● Inverse-Propensity Scoring* for estimating average reward of a some policy
from data collected by another policy

Bootstrapping and testing

(*) Peter C. Austin. 2011. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.

Elements of a solution

Comments

Scoring model

Ranking

Elements of a solution

log (r)

Comments

Scoring model

Ranking

Distributed DB Reward instrumentation

Elements of a solution

log (r)

log (x, a, p
)

Comments

Scoring model

Ranking

Distributed DB Reward instrumentation

Elements of a solution

log (r)

log (x, a, p
)

Comments

Scoring model

Machine learning Ranking
(x, a, r, p)

Distributed DB Reward instrumentation

Implementation

Presentation

Comment
processing

Hadoop

votes

TensorFlow

(r)

(x, a, p)

create, update

feed

rankingsVespa

Vespa

● Search and filter over
structured and unstructured
data

● Query time organization and
aggregation of matching
data

● Real-time writes

● Advanced relevance scoring
with tensors as first class
citizens*

● Scaleable and fast
● Elastic and fault tolerant
● Pluggable
● Easy to operate

Typical use cases: text search, personalization,
recommendation, targeting, real-time data display

A platform for low latency computations over large, evolving data sets:

(*) https://github.com/jobergum/dense-vector-ranking-performance

https://github.com/jobergum/dense-vector-ranking-performance

Scaleable and fast

● About 1 billion comments / ~12.000 queries per second
● Read latency 7ms for 10k comments - including model evaluation
● Write latency ~1ms

Direct deployment of ML scoring models

Advanced computation framework for complex features

Custom logic for implementing sampling and logging

Hosted for simpler architecture *

Vespa as comment serving system

 (*) https://vespa.ai/cloud

https://vespa.ai/cloud

Scalable low latency execution

Container node

Query

Application
Package

Admin &
Config

Content node

Deploy

- Configuration
- Components
- ML models

Scatter-gather

Core
sharding

models models models

How to bound latency:
1) Parallelization
2) Prepared data structures (indexes etc.)
3) Move execution to data nodes

Deploying ML models to Vespa

map(
 join(
 reduce(
 join(
 placeholder,
 weights,
 f(x,y)(x * y)
),
 sum,
 d1
),
 bias,
 f(x,y)(x + y)
),
 f(x)(max(0,x))
)placeholder weights

matmul bias

add

relu
1. Model in application

package

2. Download model from
external source during
(re-)deployment

3. Feed model weights as
tensors

Deployment strategy

Experimental
bucket

A/B
test

Production

Traffic splitter

Freeze
scoring
model

~25% increase in time spent

Experimenting with

● more features for a larger neural networks
● personalized comment ranking
● more sophisticated rewards

Results and ongoing work

Generalizing the implementation

Presentation

Content
processing

Distributed
DB

Machine
learning

(r)

(x, a, p)

feed

rankingsVespa

External content

Search

News
recommendation

Product
recommendation

Ad selection

Q&A

+++

Thanks to

Verizon Media Engineering

Sreekanth Ramakrishnan
Aaron Nagao
Zhi Qu
Xue Wu

Verizon Media Science

Akshay Soni
Kapil Thadani

Thank you!

https://vespa.ai/cloud

vespa.ai

https://vespa.ai/cloud

