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Encourages meaningful discussion?





 Vespa at 

Hundreds of Vespa 
applications (Flickr, Tumblr, 
TechCrunch, Huffington 
Post, Aol, Gemini, Engadget, 
Yahoo News Sports Finance 
Mail etc.):

● serving over a billion users,

● hundreds of thousands of 
queries per second,

● billions of content items.

Personalized article 
recommendations

Personalized 
real-time native ads 

selection

Searching
20+ billion images

Select comments 
using neural nets and 
reinforcement learning
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Baseline - existing solution

Comments found on many Yahoo 
properties such as Yahoo Finance, 
Yahoo News, and Yahoo Sports

● ~ 1 billion comments stored
● ~ 12.000 queries per second
● 2x that for updates

Some articles have > 100.000 
comments!

https://blog.vespa.ai/post/182759620076/serving-article-comments-using-reinforcement

https://blog.vespa.ai/post/182759620076/serving-article-comments-using-reinforcement


Potential features Wilson score*: probability of comment 
being overwhelmingly liked by all users

(*) Zhang et. al. 2011. How to Count Thumb-Ups and Thumb-Downs: User-Rating Based Ranking of Items from an Axiomatic Perspective.

Community How users interacted with comment

Comment Relevance to topic, moderation

Author Reputation

User Preferences

Other Time
Conversation AI (https://conversationai.github.io)

https://conversationai.github.io


Previous ranking algorithm

Community features

Comment features

Author features

User features

Other features

Final score

Hardcoded weighting
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Scoring

Question Answer

How should features be 
combined intelligently?

Neural network over 
comment features

Ranking How can we overcome 
position bias?

Exploration with sampling

Learning How do we learn directly 
from user behavior?

Reinforcement learning with 
dwell time rewards



Reinforcement learning in general

RL is a general-purpose framework 
for artificial intelligence
● RL is for an agent with the 

capacity to act
● Each action influences the 

agent’s future state
● Success is measured by a 

scalar reward signal
● Select actions to maximise 

future reward



Multi-arm bandits with context

Reward r is conditioned on chosen 
action - feedback is partial

Canonical example: ad serving

Contextual bandits

Source: Microsoft research

features x

score v = f(x)

action a

}policy



Sometimes called contextual semibandits*

Importance weighted sampling to construct unbiased estimates for rewards

}
Contextual bandits in ranking

features x

score v = f(x)

ranking

policy

(*) Krishnamurthy, Agarwal, Dudík 2016. Contextual Semibandits via Supervised Learning Oracles.

Policy chooses a 
ranking, not an action
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Learning
Model Rankings Reward Gradient ascent

Can use any reward

in direction of expected reward



Cold start: pre-train neural network to emulate previous ranking

● Gradient ascent with Kendall’s tau coefficient as reward

Off-policy evaluation: interactions are logged as (x, a, r, p), where p is the policy’s 
probability of choosing a given x.

● Inverse-Propensity Scoring* for estimating average reward of a some policy 
from data collected by another policy

Bootstrapping and testing

(*) Peter C. Austin. 2011. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.
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Elements of a solution

log (r)

log (x, a, p
)

Comments

Scoring model

Machine learning Ranking
(x, a, r, p)

Distributed DB Reward instrumentation



Implementation

Presentation

Comment 
processing

Hadoop

votes

TensorFlow

(r)

(x, a, p)

create, update

feed

rankingsVespa



Vespa

● Search and filter over 
structured and unstructured 
data

● Query time organization and 
aggregation of matching 
data

● Real-time writes

● Advanced relevance scoring 
with tensors as first class 
citizens*

● Scaleable and fast
● Elastic and fault tolerant
● Pluggable
● Easy to operate

Typical use cases: text search, personalization, 
recommendation, targeting, real-time data display

A platform for low latency computations over large, evolving data sets:

(*) https://github.com/jobergum/dense-vector-ranking-performance

https://github.com/jobergum/dense-vector-ranking-performance


Scaleable and fast

● About 1 billion comments / ~12.000 queries per second
● Read latency 7ms for 10k comments - including model evaluation
● Write latency ~1ms

Direct deployment of ML scoring models

Advanced computation framework for complex features 

Custom logic for implementing sampling and logging

Hosted for simpler architecture *

Vespa as comment serving system

 (*) https://vespa.ai/cloud

https://vespa.ai/cloud


Scalable low latency execution

Container node

Query

Application 
Package

Admin &
Config

Content node

Deploy

- Configuration
- Components
- ML models

Scatter-gather

Core 
sharding

models models models

How to bound latency:
1) Parallelization  
2) Prepared data structures (indexes etc.)
3) Move execution to data nodes  



Deploying ML models to Vespa

map(
   join(
      reduce(
         join(
            placeholder, 
            weights,
            f(x,y)(x * y)
         ),
         sum,
         d1
      ),
      bias,
      f(x,y)(x + y)
   ),
   f(x)(max(0,x))
)placeholder weights

matmul bias

add

relu
1. Model in application 

package

2. Download model from 
external source during 
(re-)deployment

3. Feed model weights as 
tensors



Deployment  strategy

Experimental 
bucket

A/B 
test

Production

Traffic splitter

Freeze 
scoring 
model



~25% increase in time spent

Experimenting with 

● more features for a larger neural networks
● personalized comment ranking
● more sophisticated rewards

Results and ongoing work



Generalizing the implementation

Presentation

Content 
processing

Distributed 
DB

Machine 
learning

(r)

(x, a, p)

feed

rankingsVespa

External content

Search

News 
recommendation

Product 
recommendation

Ad selection

Q&A

+++
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Thank you!

https://vespa.ai/cloud

vespa.ai

https://vespa.ai/cloud

