
Trey Grainger
Chief Algorithms Officer

Balancing the Dimensions of User Intent

October 28, 2019

Trey Grainger
Chief Algorithms Officer

• Previously: SVP of Engineering @ Lucidworks; Director of Engineering @ CareerBuilder
• Georgia Tech – MBA, Management of Technology
• Furman University – BA, Computer Science, Business, & Philosophy
• Stanford University – Information Retrieval & Web Search

Other fun projects:
• Co-author of Solr in Action, plus numerous research publications

• Advisor to Presearch, the decentralized search engine

• Lucene / Solr contributor

About Me

http://www.presearch.io/

• About Lucidworks
• What is AI-powered Search?
• The Dimensions of User Intent
• Content Understanding:

• Keyword Search
• User Understanding:

• Collaborative Recommendations
• Content Understanding + User Understanding:

• Personalized Search
• Domain Understanding:

• Knowledge Graphs
• Domain Understanding + User Understanding:

• Domain-aware Matching
• Content Understanding + Domain Understanding:

• Semantic Search
• Balancing Approaches:

• Keyword vs. Vector vs. Knowledge Graph Search
• Vector Search
• Knowledge Graph Search

• Combining it all together

Agenda

Who are we?

300+
CUSTOMERS ACROSS THE
FORTUNE 1000

400+
EMPLOYEES

OFFICES IN

San Francisco, CA (HQ)
Raleigh-Durham, NC
Cambridge, UK
Bangalore, India
Hong Kong

The Search & AI Conference

COMPANY BEHIND

D E V E L O P M E N T ,
H O S T I N G ,
& S U P P O R T

Proudly built with open-source
tech at its core: Apache Solr &
Apache Spark

Personalizes search
with applied
machine learning

Proven on the
world’s biggest
information systems

AI-Powered Search
What is

?

http://aiPoweredSearch.com

... is my new book!

(Haystack discount code: ctwhay19)

AI-powered Search

AI-powered Search

Question / Answer
Systems
Virtual Assistants

• Signals Boosting Models
• Learning to Rank
• Semantic Search
• Collaborative Filtering
• Personalized Search
• Content Clustering
• NLP / Entity Resolution
• Semantic Knowledge Graphs
• Document Classification
• etc.

• Neural Search
• Word Embeddings
• Vector Search
• Image / Voice Search
• etc.

• Question / Answer Systems
• Virtual Assistants
• Chatbots
• Rules-based Relevancy
• etc.

We have a big toolbox - great!

But how do we properly apply
those tools?

Dimensions of User Intent

Content
Understanding

Domain
Understanding

User
Understanding

User Intent

Keyword
Search

Dimensions of User Intent

Content
Understanding

Domain
Understanding

User
Understanding

User Intent

/solr/collection/select/?q=apache solr

Term Documents

… …

apache doc1, doc3, doc4,
doc5

…
lucene doc2, doc4, doc6
… …

solr doc1, doc3, doc4,
doc7, doc8

… …

doc5

doc7 doc8

doc1 doc3
doc4

solr

apache

apache solr

Matching queries to documents

BM25 (Relevance Scoring between Query and Documents)

Score(q, d) =
∑ idf(t) · (tf(t in d) · (k + 1)) / (tf(t in d) + k · (1 – b + b · |d| / avgdl)

t in q

Where:
t = term; d = document; q = query; i = index
tf(t in d) = numTermOccurrencesInDocument ½
idf(t) = 1 + log (numDocs / (docFreq + 1))
|d| = ∑ 1

t in d

avgdl = = (∑ |d|) / (∑ 1))
d in i d in i

k = Free parameter. Usually ~1.2 to 2.0. Increases term frequency saturation point.

b = Free parameter. Usually ~0.75. Increases impact of document normalization.

ipad

Keyword
Search

Dimensions of User Intent

Content
Understanding

Domain
Understanding

Collaborative
Recommendations User

Understanding
User Intent

Collaborative Filtering (Recommendations)

User
Searches

User
Sees
Results

User
takes an
action

Users’ actions
inform system
improvements

User Query Results

Alonzo ipad doc10,
doc22,
doc12, …

Elena printer doc84,
doc2,
doc17, …

Ming ipad doc10,
doc22,
doc12, …

… … …

User Action Document

Alonzo click doc22

Elena click doc17

Ming click doc12

Alonzo purchase doc22

Ming click doc22

Ming purchase doc12

Elena click doc2

… … …

User Item Weight

Alonzo doc22 1.0

Alonzo doc12 0.4

… … …

Ming doc12 0.9

Ming doc22 0.6

… … …

ipad ⌕

Matrix Factorization

Recommendations for Alonzo:
• doc22: “iPad Pro”
• doc12: “Kindle Fire”
…

Recommendations (User-Item, Item-Item, Query-Item)

User Item Weight

Alonzo doc22 1.0

Alonzo doc12 0.4

… … …

Ming doc12 0.9

Ming doc22 0.6

… … …

Recommendations for Alonzo:
• doc22: “iPad Pro”
• doc12: “Kindle Fire”
…

Item Item Weight

doc22 doc22 1.0

doc22 doc12 0.85

… … …

doc12 doc12 1.0

doc12 doc22 0.83

… … …

Query Item Weight

ipad doc22 0.98

ipad doc12 0.6

… … …

kindle doc12 0.96

apple doc22 0.90

… … …

Recommendations for Doc22:
• doc22: “iPad Pro”
• doc12: “Kindle Fire”
…

Recommendations for “ipad”:
• doc22: “iPad Pro”
• doc12: “Kindle Fire”
…

Matrix Factorization

ipad

ipad

Keyword
Search

Knowledge Graph

Dimensions of User Intent

Content
Understanding

Domain
Understanding

Collaborative
Recommendations User

Understanding
User Intent

What is a Knowledge Graph?
(vs. Ontology vs. Taxonomy vs. Synonyms, etc.)

Overly Simplistic Definitions
Alternative Labels: Substitute words with identical meanings
[CTO => Chief Technology Officer; specialise => specialize]

Synonyms List: Provides substitute words that can be used to represent
the same or very similar things
[human => homo sapien, mankind; food => sustenance, meal]

Taxonomy: Classifies things into Categories
[john is Human; Human is Mammal; Mammal is Animal]

Ontology: Defines relationships between types of things
[animal eats food; human is animal]

Knowledge Graph: Instantiation of an
Ontology (contains the things that are related)
[john is human; john eats food]

A Knowledge Graph subsumes the other types.

Keyword
Search

Knowledge Graph

User Intent

Personalized
Search

Dimensions of User Intent

Content
Understanding

Domain
Understanding

Collaborative
Recommendations User

Understanding

Keyword Search
(Completely User-specified)

Traditional
Recommendations
(Completely driven by
user behavior)

Keyword Search
(Completely User-specified)

User-guided
Recommendations
(Mostly driven by user profile,
partially user-specified)

Traditional
Recommendations
(Completely driven by
user behavior)

Keyword Search
(Completely User-specified)

Personalized
Queries
(Mostly user-specified,
partially driven by user profile)

Personalized
Queries
(Mostly user-specified,
partially driven by user profile)

Keyword Search
(Completely User-specified)

User-guided
Recommendations
(Mostly driven by user profile,
partially user-specified)

Traditional
Recommendations
(Completely driven by
user behavior)

Personalized Search

Personalization

Regular Search Results: Personalized Search Results:
User:

Nice - personalization is awesome!

Let’s roll it out everywhere!

Ugh…

Keyword
Search

Knowledge Graph

User Intent

Personalized
Search

Domain-aware
Matching

Dimensions of User Intent

Content
Understanding

Domain
Understanding

Collaborative
Recommendations User

Understanding

Knowledge Graph
(Understanding conceptual
and logical relationships
between domain-specific entities)

Collaborative
Recommendations
(Completely driven by
user behavior)

Personas / User Profiles
(User attributes and preferences in
knowledge graph)

Multimodal Recommendations
(Recommendations combining
collaborative filtering plus user-based
profile attribute matching/ranking)

Knowledge Graph
(Understanding conceptual
and logical relationships
between domain-specific entities)

Collaborative
Recommendations
(Completely driven by
user behavior)

Personas / User Profiles
(User attributes and preferences in
knowledge graph)

Multimodal Recommendations
(Recommendations combining
collaborative filtering plus user-based
profile attribute matching/ranking)

Knowledge Graph
(Understanding conceptual
and logical relationships
between domain-specific entities)

Collaborative
Recommendations
(Completely driven by
user behavior)

Domain-aware Matching

http://localhost:8983/solr/jobs/select/?
fl=jobtitle,city,state,salary&

q=(
jobtitle:"nurse educator"^25 OR jobtitle:(nurse educator)^10

)
AND (

(city:"Boston" AND state:"MA")^15
OR state:"MA")

AND (_val_:"map(salary, 40000, 60000,10, 0)"
OR {!edismax mm=2}similar_users:(u99 u1 u50 u2311 u253 u70 u99))

*Example derived from chapter 16 of Solr in Action

Multimodal Recommendations

Jane is a nurse educator in Boston seeking between $40K and $60K

She has interacted with the same content as the following users:
u99,u1,u50,u2311,u253,u70,u99

Keyword
Search

Knowledge Graph

User Intent

Personalized
Search

Semantic
Search

Domain-aware
Matching

Dimensions of User Intent

Content
Understanding

Domain
Understanding

Collaborative
Recommendations User

Understanding

Keyword Search
(Finding and
Ranking Keyword)

Knowledge Graph
(Understanding conceptual and
logical relationships between
domain-specific entities)

Language Understanding
(Understanding syntax
and query structure)

Keyword Search
(Finding and
Ranking Keyword)

Terminology Understanding
(Understanding domain-specific
terms and conceptual meaning)

Knowledge Graph
(Understanding conceptual and
logical relationships between
domain-specific entities)

Language Understanding
(Understanding syntax
and query structure)

Terminology Understanding
(Understanding domain-specific
terms and conceptual meaning)

Keyword Search
(Finding and
Ranking Keyword)

Knowledge Graph
(Understanding conceptual and
logical relationships between
domain-specific entities)

Semantic Search

Sentence Embeddings:
[2, 3, 2, 4, 2, 1, 5, 3]
[5, 3, 2, 3, 4, 0, 3, 4]
. . .

Document Embedding:
[4, 1, 4, 2, 1, 2, 4, 3]

Word Embeddings:
[5, 1, 3, 4, 2, 1, 5, 3]
[4, 1, 3, 0, 1, 1, 4, 2]
. . .

Paragraph Embeddings:
[5, 1, 4, 1, 0, 2, 4, 0]
[1, 1, 4, 2, 1, 0, 0, 0]
. . .

Thought Vectors

apple caffeine cheese coffee drink donut food juice pizza tea water … term N
cappuccino 0 0 0 0 0 0 0 0 0 0 0 ...
apple 1 0 0 0 0 0 0 0 0 0 0 ...

juice 0 0 0 0 0 0 0 1 0 0 0 ...

cheese 0 0 1 0 0 0 0 0 0 0 0 ...

pizza 0 0 0 0 0 0 0 0 1 0 0 ...

donut 0 0 0 0 0 1 0 0 0 0 0 ...

green 0 0 0 0 0 0 0 0 0 0 0 ...
tea 0 0 0 0 0 0 0 0 0 1 0 ...

bread 0 0 1 0 0 0 0 0 0 0 0 ...

sticks 0 0 0 0 0 0 0 0 0 0 0 ...

exact term lookup in inverted indexquery

Single Term Searches (as a Vector)

Combined Vector

query

Multi-term Query Vectors

juice 0 0 0 0 0 0 0 1 0 0 0 ...

apple 1 0 0 0 0 0 0 0 0 0 0 ...

+

apple juice 1 0 0 0 0 0 0 1 0 0 0 ...

apple caffeine cheese coffee drink donut food juice pizza tea water … term N
latte 0 0 0 0 0 0 0 0 0 0 0 ...
cappuccino 0 0 0 0 0 0 0 0 0 0 0 ...
apple juice 1 0 0 0 0 0 0 1 0 0 0 ...

cheese pizza 0 0 1 0 0 0 0 0 1 0 0 ...

donut 0 0 0 0 0 1 0 0 0 0 0 ...

soda 0 0 0 0 0 0 0 0 0 0 0 ...
green tea 0 0 0 0 0 0 0 0 0 1 0 ...

water 0 0 0 0 0 0 0 0 0 0 1 ...

cheese bread
sticks

0 0 1 0 0 0 0 0 0 0 0 ...

cinnamon sticks 0 0 0 0 0 0 0 0 0 0 0 ...

exact term lookup in inverted indexquery

Multi-term Searches

food drink dairy bread caffeine sweet calories healthy
apple juice 0 5 0 0 0 4 4 3
cappuccino 0 5 3 0 4 1 2 3
cheese bread
sticks

5 0 4 5 0 1 4 2

cheese pizza 5 0 4 4 0 1 5 2
cinnamon
bread sticks

5 0 1 5 0 3 4 2

donut 5 0 1 5 0 4 5 1
green tea 0 5 0 0 2 1 1 5
latte 0 5 4 0 4 1 3 3
soda 0 5 0 0 3 5 5 0
water 0 5 0 0 0 0 0 5

Dimensionality Reduction

Phrase: Vector:
apple juice: [0, 5, 0, 0, 0, 4, 4, 3]
cappuccino: [0, 5, 3, 0, 4, 1, 2, 3]
cheese bread sticks: [5, 0, 4, 5, 0, 1, 4, 2]
cheese pizza: [5, 0, 4, 4, 0, 1, 5, 2]
cinnamon bread sticks: [5, 0, 4, 5, 0, 1, 4, 2]
donut: [5, 0, 1, 5, 0, 4, 5, 1]
green tea: [0, 5, 0, 0, 2, 1, 1, 5]
latte: [0, 5, 4, 0, 4, 1, 3, 3]
soda: [0, 5, 0, 0, 3, 5, 5, 0]
water: [0, 5, 0, 0, 0, 0, 0, 5]

Ranked Results: Green Tea

0.94 water
0.85 cappuccino
0.80 latte
0.78 apple juice
0.60 soda
… …
0.19 donut

Vector Similarity Scores:

Vector Similarity (a, b):
cos(θ) = a · b

|a| × |b|

Ranked Results: Cheese Pizza

0.99 cheese bread sticks
0.91 cinnamon bread sticks
0.89 donut
0.47 latte
0.46 apple juice
… …
0.19 water

Vector Similarity Scoring

Vector Similarity Scores:

Performance Considerations
Problem: Vector Scoring is Slow

• Unlike keyword search, which looks up pre-indexed answers to queries, Vector Search must instead calculate
similarities between the query vector and every document’s vectors to determine best matches, which is
slow at scale.

Solution: Quantized Vectors
• “Quantization” is the process for mapping vectors features to discrete values.
• Creating “tokens” which map to a similar vector space, enables matching on those tokens to perform an ANN

(Approximate Nearest Neighbor) search
• This enables converting vector scoring into a search problem (term lookup and scoring), which is fast again,

at the expense of some recall and scoring accuracy

Recommended Approach: Quantized Vector Search + Vector Similarity Reranking
• Combine the best of both worlds by running an initial ANN search on a quantized vector representation, and

then re-rank the top-N results using full Vector similarity scoring.

Solr Implementation Options

Option 1: Streaming Expressions

curl -X POST -H "Content-Type: application/json" \
http://localhost:8983/solr/food/update?commit=true \
--data-binary ' [
{"id": "1", "name_s":"donut", "vector_fs":[5.0,0.0,1.0,5.0,0.0,4.0,5.0,1.0]},
{"id": "2", "name_s":"apple juice",

"vector_fs":[1.0,5.0,0.0,0.0,0.0,4.0,4.0,3.0]},
{"id": "3", "name_s":"cappuccino",

"vector_fs":[0.0,5.0,3.0,0.0,4.0,1.0,2.0,3.0]},
{"id": "4", "name_s":"cheese pizza",

"vector_fs":[5.0,0.0,4.0,4.0,0.0,1.0,5.0,2.0]},
{"id": "5", "name_s":"green tea",

"vector_fs":[0.0,5.0,0.0,0.0,2.0,1.0,1.0,5.0]},
{"id": "6", "name_s":"latte", "vector_fs":[0.0,5.0,4.0,0.0,4.0,1.0,3.0,3.0]},
{"id": "7", "name_s":"soda", "vector_fs":[0.0,5.0,0.0,0.0,3.0,5.0,5.0,0.0]},
{"id": "8", "name_s":"cheese bread sticks",

"vector_fs":[5.0,0.0,4.0,5.0,0.0,1.0,4.0,2.0]},
{"id": "9", "name_s":"water", "vector_fs":[0.0,5.0,0.0,0.0,0.0,0.0,0.0,5.0]},
{"id": "10", "name_s":"cinnamon bread sticks",

"vector_fs":[5.0,0.0,1.0,5.0,0.0,3.0,4.0,2.0]}
] '

Send Documents to Solr:
Streaming Expressions

8983

Option 2:
Streaming Expressions Query Parser

http://localhost:8983/solr/food/select?q=*:*&fl=id,name_s&

fq={!streaming_expression}top(

select(

search(food, q="*:*", fl="id,vector_fs", sort="id asc"),

cosineSimilarity(vector_fs, array(5.1,0.0,1.0,5.0,0.0,4.0,5.0,1.0)) as cos, id),

n=5, sort="cos desc”

)

{ "responseHeader":{

… },

"response":{"numFound":5,"start":0,"docs":[

{ "name_s":"donut", "id":"1"},

{ "name_s":"apple juice", "id":"2"},

{ "name_s":"cheese pizza", "id":"4"},

{ "name_s":"cheese bread sticks", "id":"8"},

{ "name_s":"cinnamon bread sticks", "id":"10"}]

}}

Request:

Response:

Streaming Expressions Query Parser

Option 3:
Solr Vector Scoring Plugin

Send Documents to Solr:
curl -X POST -H "Content-Type: application/json"
http://localhost:8983/solr/{your-collection-name}/update?commit=true --
data-binary ‘
[
{"name":"example 0", "vector":"0|1.55 1|3.53 2|2.3 3|0.7 4|3.44 5|2.33"},
{"name":"example 1", "vector":"0|3.54 1|0.4 2|4.16 3|4.88 4|4.28 5|4.25"},
{"name":"example 2", "vector":"0|1.11 1|0.6 2|1.47 3|1.99 4|2.91 5|1.01"},
{"name":"example 3", "vector":"0|0.06 1|4.73 2|0.29 3|1.27 4|0.69 5|3.9"},
{"name":"example 4", "vector":"0|4.01 1|3.69 2|2 3|4.36 4|1.09 5|0.1"},
{"name":"example 5", "vector":"0|0.64 1|3.95 2|1.03 3|1.65 4|0.99 5|0.09"}
]'

Solr Vector Scoring Plugin

Request:

Response:

http://localhost:8983/solr/{your-collection-name}/query?fl=name,score,vector&q={!vp f=vector
vector="0.1,4.75,0.3,1.2,0.7,4.0”

}

{ "responseHeader":{ "status":0, "QTime":1}},
"response":{ "numFound":6,"start":0,"maxScore":0.99984086,

"docs":[
{ "name":["example 3"], "vector":["0|0.06 1|4.73 2|0.29 3|1.27 4|0.69 5|3.9 "],

"score":0.99984086},
{ "name":["example 0"], "vector":["0|1.55 1|3.53 2|2.3 3|0.7 4|3.44 5|2.33 "], "score":0.7693964},
{ "name":["example 5"], "vector":["0|0.64 1|3.95 2|1.03 3|1.65 4|0.99 5|0.09 "], "score":0.76322395},
{ "name":["example 4"], "vector":["0|4.01 1|3.69 2|2 3|4.36 4|1.09 5|0.1 "], "score":0.5328145},
{ "name":["example 1"], "vector":["0|3.54 1|0.4 2|4.16 3|4.88 4|4.28 5|4.25 "], "score":0.48513117},
{ "name":["example 2"], "vector":["0|1.11 1|0.6 2|1.47 3|1.99 4|2.91 5|1.01 "], "score":0.44909418}]
}}

Solr Vector Scoring Plugin

Option 4:
Solr Vector Scoring + LSH Plugin

Send Documents to Solr:

Solr Vector Scoring + LSH Plugin

curl -X POST -H "Content-Type: application/json" http://localhost:8983/solr/{your-collection-
name}/update?update.chain=LSH&commit=true --data-binary ‘
[

{"id":"1", "vector":"1.55,3.53,2.3,0.7,3.44,2.33"},
{"id":"2", "vector":"3.54,0.4,4.16,4.88,4.28,4.25"}

]'

http://localhost:8983/solr/{your-collection-name}/query?fl=name,score,vector&q={!vp f=vector
vector="1.55,3.53,2.3,0.7,3.44,2.33" lsh="true"
reRankDocs="5"}&fl=name,score,vector,_vector_,_lsh_hash_

Request:

Response:

Solr Vector Scoring + LSH Plugin

{
"responseHeader":{ "status":0, "QTime":8, "response":{"numFound":1,"start":0,"maxScore":36.65736,
"docs":[

{ "id": "1", "vector":"1.55,3.53,2.3,0.7,3.44,2.33",
"_vector_":"/z/GZmZAYeuFQBMzMz8zMzNAXCj2QBUeuA==",
"_lsh_hash_":["0_8", "1_35", "2_7", "3_10", "4_2", "5_35", "6_16", "7_30", "8_27", "9_12", "10_7",

"11_32", "12_48", "13_36", "14_10", "15_7", "16_42", "17_5", "18_3", "19_2", "20_1",
"21_0", "22_24", "23_18", "24_42", "25_31", "26_35", "27_8", "28_1", "29_24", "30_47",
"31_14", "32_22", "33_39", "34_0", "35_34", "36_34", "37_39", "38_27", "39_27",
"40_45", "41_10", "42_21", "43_34", "44_41", "45_9", "46_31", "47_0", "48_4", "49_43"],

"score":36.65736}
] } }

http://localhost:8983/solr/{your-collection-name}/query?fl=name,score,vector&q={!vp f=vector
vector="1.55,3.53,2.3,0.7,3.44,2.33" lsh="true"
reRankDocs="5"}&fl=name,score,vector,_vector_,_lsh_hash_

Request:

Option 5 (Work in Progress):
First-class Vector Fields in Lucene/Solr

Now In Progress

ANN Benchmarks
(Approximate Nearest Neighbor)

https://github.com/erikbern/ann-benchmarks

https://github.com/erikbern/ann-benchmarks

Vector Encoders

• Take queries, documents, sentences, paragraphs, etc. and
transform them into vectors.

• Usually leverage deep learning, which can discover rich language
usage rules and map them to combinations of features in the
vector

• Popular Libraries:
• Bert
• Elmo
• Universal Sentence Encoder
• Word2Vec
• Sentence2Vec
• Glove
• fastText
• many more …

Vector Encoders

Query Type Likely Outcome
Obscure keyword combinations
Q. (software OR hardware) AND enginee*

• Keyword search succeeds
• Vector Search fails

Natural Language Queries
Q. Can my wife drive on my insurance?

• Keyword search might get
lucky, but probably fails

• Vector Search succeeds
Fuzzy Language Queries
Q. famous french tower

• Keyword search mismatch
yields poor results

• Vector Search succeeds
Structured Relationship Queries
Q. popular bbq near Activate

• Keyword search fails
• Vector search fails
• Need a Knowledge Graph!

Keyword Search vs. Vector Search

Giant Graph of Relationships...
Trey Grainger works for Lucidworks.

He spoke at the Activate 2019
conference.

#Activate19
(Activate) wqs held in Washington, DC

September 9-12, 2019.

Trey got his masters degree from
Georgia Tech.

Trey’s Voicemail

Semantic Knowledge Graph

id: 1

job_title: Software Engineer

desc: software engineer at a

great company

skills: .Net, C#, java

id: 2

job_title: Registered Nurse

desc: a registered nurse at

hospital doing hard work

skills: oncology, phlebotemy

id: 3

job_title: Java Developer

desc: a software engineer or a

java engineer doing work

skills: java, scala, hibernate

field doc term

desc

1
a

at

company

engineer

great

software

2
a

at

doing

hard

hospital

nurse

registered

work

3
a

doing

engineer

java

or

software

work

job_title 1
Software
Engineer

… … …

Terms-Docs Inverted IndexDocs-Terms Forward IndexDocuments

Source: Trey Grainger,
Khalifeh AlJadda,
Mohammed Korayem,
Andries Smith.“The Semantic
Knowledge Graph: A
compact, auto-generated
model for real-time traversal
and ranking of any
relationship within a domain”.
DSAA 2016.

Knowledge
Graphfield term postings

list
doc pos

desc

a
1 4

2 1

3 1, 5

at
1 3

2 4

company 1 6

doing
2 6

3 8

engineer
1 2

3 3, 7

great 1 5

hard 2 7

hospital 2 5

java 3 6

nurse 2 3

or 3 4

registered 2 2

software
1 1

3 2

work
2 10

3 9

job_title java developer 3 1

… … … …

Related term vector (for query concept expansion)

http://localhost:8983/solr/stack-exchange-health/skg

Disambiguation by Category Example

Meaning 1: Restaurant => bbq, brisket, ribs, pork, …
Meaning 2: Outdoor Equipment => bbq, grill, charcoal, propane, …

Example Query:

Demo!

Demo Data

Places (also includes geonames database)

Entities (includes search commands)

Text Content
[Web crawl of restaurant and product reviews sites]

Solr Knowledge Graph Traversal Query
"bbq",

Why this Semantic Nuance Matters

popular barbeque near Haystack EU
(popular same as "good", "top", "best")

hotels near Haystack EU

hotels near popular BBQ in Berlin

BBQ near airports near Berlin

hotels near movie theaters in Berlin …

Other Knowledge Graph Search examples:

Keyword
Search

Knowledge Graph

User Intent

Personalized
Search

Semantic
Search

Domain-aware
Matching

Dimensions of User Intent

Content
Understanding

Domain
Understanding

Collaborative
Recommendations User

Understanding

News Search : popularity and freshness drive relevance

Restaurant Search: geographical proximity and price range are critical

Ecommerce: likelihood of a purchase is key

Movie search: More popular titles are generally more relevant

Job search: category of job, salary range, and geographical proximity matter

The right ranking algorithm is domain and context-dependent

Example Combining Content + Domain + User Context

News website:

/select?
fq={!cache=false v=$keywords}&
q= {!func}scale(query($keywords),0,25)

{!func}scale(geodist(),0,25)
{!func}recip(rord(publicationDate),1,25,0)
{!func}scale(popularity,0,25)&

keywords="fall festival"&
sfield=location&
pt=33.748,-84.391

25%

25%

25%
25%

*Example from chapter 16 of Solr in Action

But how do we figure out the right
balance of weights?

Learning to Rank

User
Searches

User
Sees
Results

User
takes an
action

Users’ actions
inform system
improvements

User Query Results

Alonzo ipad doc10,
doc22
doc12, …

Elena printer doc84,
doc2,
doc17, …

Ming ipad doc10,
doc22
doc12

… … …

User Action Document

Alonzo click doc22

Elena click doc17

Ming click doc12

Alonzo purchase doc22

Ming click doc22

Ming purchase doc22

Elena click doc2

… … …

Feature Weight

title_match_all_terms 15.25

exact_phrase_match 10

signal_boost 9.5

content_age 9.2

user_geo_distance 6.5

personalization_cat_1 2.8

doc_popularity 2.75

… …

ipad ⌕
Initial Results:

1) doc1
2) doc2
3) doc3

Build Ranking Classifier
(from Implicit Relevance Judgements)

Final Results:
1) doc3
2) doc1
3) doc2

Facet,
Topic &
Cluster

Query Rule
Matching

Natural
Language

Machine
Learning

Boosted
Results

Signals

Content
Index

System Generated

Human Generated

Application Generated

Solution

Data

We operationalize AI for the
largest businesses on the planet.

Questions?

Trey Grainger
trey@lucidworks.com

@treygrainger

Other presentations:
http://www.treygrainger.com

40% Discount code: ctwhay19

http://aiPoweredSearch.com
http://solrinaction.com

Books:

Thank You!

http://www.treygrainger.com/

