
Search Quality Evaluation
Tools and Techniques

Alessandro Benedetti, Software Engineer
Andrea Gazzarini, Software Engineer
2nd October 2018

Who we are

▪ Search Consultant
▪ R&D Software Engineer
▪ Master in Computer Science
▪ Apache Lucene/Solr Enthusiast
▪ Semantic, NLP, Machine Learning

Technologies passionate
▪ Beach Volleyball Player & Snowboarder

Alessandro Benedetti

Who we are

▪ Software Engineer (1999-)
▪ “Hermit” Software Engineer (2010-)
▪ Java & Information Retrieval Passionate
▪ Apache Qpid (past) Committer
▪ Husband & Father
▪ Bass Player

Andrea Gazzarini, “Gazza”

Sease

Search Services
● Open Source Enthusiasts
● Apache Lucene/Solr experts
! Community Contributors
● Active Researchers
● Hot Trends : Learning To Rank, Document Similarity,
 Measuring Search Quality, Relevancy Tuning

✓ Search Quality Evaluation

‣ Context overview

‣ Correctness

‣ Evaluation Measures

➢ Rated Ranking Evaluator (RRE)

➢ Future Works

➢ Q&A

Agenda

Search engineering is the production of quality
search systems.

Search quality (and in general software quality) is a
huge topic which can be described using internal
and external factors.

In the end, only external factors matter, those that
can be perceived by users and customers. But the
key for getting optimal levels of those external
factors are the internal ones.

One of the main differences between search and
software quality (especially from a correctness
perspective) is in the ok / ko judgment, which is, in
general, more “deterministic” in case of software
development.

Context OverviewSearch Quality

Internal Factors
External Factors

Correctness
RobustnessExtendibility

Reusability
Efficiency

Timeliness
Modularity

Readability

Maintainability
Testability

Maintainability

Understandability

Reusability

….

Focused on Primarily focused on

Search Quality Evaluation

Search Quality Evaluation: Correctness

Correctness is the ability of a system to perform its
exact task, as defined by its specification.

Search domain is critical from this perspective
because correctness depends on arbitrary user
judgments.

For each internal (gray) and external (red) iteration
we need to find a way to measure the correctness.

Evaluation measures for an information retrieval
system are used to assert how well the search results
satisfied the user's query intent.

Correctness
New system Existing system

Here are the requirements

Ok

V1.0 has been released

Cool!

a month later…

We have a change request.We found a bug

We need to improve our search
system, users are complaining
about junk in search results.Ok

v0.1

…

v0.9
v1.1

v1.2

v1.3

…

v2.0

v2.0
How can we know where our system is going
between versions, in terms of correctness?

Search Quality Evaluation / Measures

Evaluation measures for an information retrieval
system try to formalise how well a search system
satisfies its user information needs.

Measures are generally split into two categories:
online and offline measures.

In this context we will focus on offline measures.

We will talk about something that can help a search
engineer during his ordinary day (i.e. in those phases
previously called “internal iterations”)

We will also see how the same tool can be used for
a broader usage, like contributing in the continuous
integration pipeline or even for delivering value to
functional stakeholders.

Evaluation MeasuresEvaluation Measures
Online Measures

Offline Measures

Average Precision

Mean Reciprocal Rank

Recall
NDCG

Precision Click-through rate
F-Measure

Zero result rate

Session abandonment rate

Session success rate
….

….

We are mainly focused here

➢ Search Quality Evaluation

✓Rated Ranking Evaluator (RRE)

‣ What is it?

‣ How does it work?

‣ Evaluation Process Input & Output

‣ Challenges

➢ Future Works

➢ Q&A

Agenda

RRE: What is it?

• A set of search quality evaluation tools

• A search quality evaluation framework

• Multi (search) platform

• Written in Java

• It can be used also in non-Java projects

• Licensed under Apache 2.0

• Open to contributions

• Extremely dynamic!

RRE: What is it?
https://github.com/SeaseLtd/rated-ranking-evaluator

https://github.com/SeaseLtd/rated-ranking-evaluator

RRE: At a glance

2
__

People

Apache Lucene/Solr
London 10

__

Modules

10
__

Modules

48950
__

Lines of Code

2
__

Months

2
__

People

10
__

Modules

10
__

Modules

67317
__

Lines of Code

5
__

Months

RRE: Ecosystem

The picture illustrates the main modules composing
the RRE ecosystem.

All modules with a dashed border are planned for a
future release.

RRE CLI has a double border because although the
rre-cli module hasn’t been developed, you can run
RRE from a command line using RRE Maven
archetype, which is part of the current release.

As you can see, the current implementation includes
two target search platforms: Apache Solr and
Elasticsearch.

The Search Platform API module provide a search
platform abstraction for plugging-in additional
search systems.

RRE Ecosystem

CORE

Plugin

 Plugin

 Reporting Plugin

Search
Platform

API

RequestHandler

RRE Server
 RRE CLI

 Plugin

Plugin

Plugin

Archetypes

RRE: Available metrics

These are the RRE built-in metrics which can be
used out of the box.

The most part of them are computed at query level
and then aggregated at upper levels.

However, compound metrics (e.g. MAP, or GMAP)
are not explicitly declared or defined, because the
computation doesn’t happen at query level. The result
of the aggregation executed on the upper levels will
automatically produce these metric.

For example, the Average Precision computed for
Q1, Q2, Q3, Qn becomes the Mean Average
Precision at Query Group or Topic levels.

Available Metrics
Precision

Recall
Precision at 1 (P@1)
Precision at 2 (P@2)
Precision at 3 (P@3)
Precision at 10 (P@10)

Average Precision (AP)
Reciprocal Rank
Mean Reciprocal Rank
Mean Average Precision (MAP)
Normalised Discounted Cumulative Gain

F-Measure Compound Metric

RRE: Domain Model (1/2)

RRE Domain Model is organized into a composite /
tree-like structure where the relationships between
entities are always 1 to many.

The top level entity is a placeholder representing an
evaluation execution.

Versioned metrics are computed at query level and
then reported, using an aggregation function, at
upper levels.

The benefit of having a composite structure is clear:
we can see a metric value at different levels (e.g. a
query, all queries belonging to a query group, all
queries belonging to a topic or at corpus level)

RRE Domain ModelEvaluation

Corpus
1..*

v1.0

P@10
NDCG

AP
F-MEASURE

….

v1.1

P@10
NDCG

AP
F-MEASURE

….

v1.2

P@10
NDCG

AP
F-MEASURE

….

v1.n

P@10
NDCG

AP
F-MEASURE

….

Topic

Query Group

Query

1..*

1..*

1..*

…

Top level domain entity

Test dataset / collection

Information need

Query variants

Queries

RRE: Domain Model (2/2)

Although the domain model structure is able to
capture complex scenarios, sometimes we want to
model simpler contexts.

In order to avoid verbose and redundant ratings
definitions it’s possibile to omit some level.
Specifically we can be in one of the following:

• only queries

• query groups and queries

• topics, query groups and queries

RRE Domain ModelEvaluation

Corpus
1..*

v1.0

P@10
NDCG

AP
F-MEASURE

….

v1.1

P@10
NDCG

AP
F-MEASURE

….

v1.2

P@10
NDCG

AP
F-MEASURE

….

v1.n

P@10
NDCG

AP
F-MEASURE

….

Topic

Query Group

Query

1..*

1..*

1..*

…

= Required

= Optional

RRE: Evaluation process overview (1/2)

Data

Configuration

Ratings

Search Platform

uses a
produces

Evaluation Data

INPUT LAYER EVALUATION LAYER OUTPUT LAYER
JSON

RRE Console

…

used for generating

RRE: Evaluation process overview (2/2)

Runtime Container

RRE Core

For each ratings set

For each dataset

For each topic

For each query group

For each query

Starts the search
platform

Stops the search
platform

Creates & configure the index

Indexes data

For each version Executes query

Computes metric

2

3

4

5

6

7

8

9 12

13

1

11

outputs the evaluation data

14

uses the evaluation data

15

RRE: Corpora

An evaluation execution can involve more than one
datasets targeting a given search platform.

A dataset consists consists of representative domain
data; although a compressed dataset can be
provided, generally it has a small/medium size.

Within RRE, corpus, dataset, collection are
synonyms.

Datasets must be located under a configurable
folder. Each dataset is then referenced in one or
more ratings file.

Corpora

RRE: Configuration Sets

The search platform configuration evolves over
time (e.g. change requests, enhancements, bugs)

RRE encourages an incremental approach for
managing the configuration instances. Even for
internal or small iterations, each time we make a
relevant change to the current configuration, it’s
better to clone it and move forward with a new
version.

In this way we’ll end up having the historical
progression of our system, and RRE will be able to
make comparisons.

The evaluation process allows you to define
inclusion / exclusion rules (i.e. include only version
1.0 and 2.0)

Configuration Sets

RRE / Query templates

For each query or query group) it’s possible to
define a template, which is a kind of query shape
containing one or more placeholders.

Then, in the ratings file you can reference one of
those defined templates and you can provide a value
for each placeholder.

Templates have been introduced in order to:

• allow a common query management between
search platforms

• define complex queries

• define runtime parameters that cannot be
statically determined (e.g. filters)

Query templates
only_q.json

filter_by_language.json

RRE: Ratings

Ratings files associate the RRE domain model
entities with relevance judgments. A ratings file
provides the association between queries and
relevant documents.

There must be at least one ratings file (otherwise no
evaluation happens). Usually there’s a 1:1
relationship between a rating file and a dataset.

Judgments, the most important part of this file,
consist of a list of all relevant documents for a
query group.

Each listed document has a corresponding “gain”
which is the relevancy judgment we want to assign
to that document.

Ratings

OR

RRE: Evaluation Output

The RRE Core itself is a library, so it outputs its
result as a Plain Java object that must be
programmatically used.

However when wrapped within a runtime container,
like the Maven Plugin, the evaluation object tree is
marshalled in JSON format.

Being interoperable, the JSON format can be used by
some other component for producing a different kind
of output.

An example of such usage is the RRE Apache
Maven Reporting Plugin which can

• output a spreadsheet

• send the evaluation data to a running RRE Server

Evaluation output

RRE: Workbook

The RRE domain model (topics, groups and queries)
is on the left and each metric (on the right section)
has a value for each version / entity pair.

In case the evaluation process includes multiple
datasets, there will be a spreadsheet for each of
them.

This output format is useful when

• you want to have (or maintain somewhere) a
snapshot about how the system performed in a
given moment

• the comparison includes a lot of versions

• you want to include all available metrics

Workbook

RRE: RRE Server (1/2)

The RRE console is a SpringBoot/AngularJS
application which shows real-time information about
evaluation results.

Each time a build happens, the RRE reporting
plugin sends the evaluation result to a RESTFul
endpoint provided by RRE Server.

The received data immediately updates the web
dashboard with fresh data.

Useful during the development / tuning phase
iterations (you don’t have to open again and again
the excel report)

RRE Server

The evaluation data, at query / version level, collects the top n search results.

In the web console, under each query, there’s a little arrow which allows to open / hide the section which contains those results.

In this way you can get immediately the meaning of each metric and its values between different versions.

In the example above, you can immediately see why there’s a loss of precision (first metric) between v1.0, v1.1, which got fixed in v1.2

RRE: RRE Server (2/2)

RRE: Iterative development & tuning

Dev, tune & Build
Check evaluation results

We are thinking about how
to fill a third monitor

RRE: Challenges

“I think if we could create a simplified
pass/fail report for the business team,
that would be ideal. So they could
understand the tradeoffs of the new
search.”

“Many search engines process the user
query heavily before it's submitted to the
search engine in whatever DSL is required,
and if you don't retain some idea of the
original query in the system how can you”
relate the test results back to user
behaviour?

Do I have to write all judgments
manually??

How can I use RRE if I have a custom
search platform?

Java is not in my stack

➢ Search Quality Evaluation

➢ Rated Ranking Evaluator

✓ Future Works / Idea

➢ Q&A

Agenda

Future Works: Solr Rank Eval API

The RRE core can be used for implementing a
RequestHandler which will be able to expose a
Ranking Evaluation endpoint.

That would result in the same functionality introduced
in Elasticsearch 6.2 [1] with some differences.

• rich tree data model

• metrics framework

Note that in this case it doesn’t make so much sense
to provide comparisons between versions.

As part of the same module there could be a
SearchComponent for evaluating a single query
interaction.
[1] https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-rank-eval.html

Rank Eval API/rank_eval

?q=something&evaluate=true

+
RRE

RequestHandler

+
RRE

SearchComponent

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-rank-eval.html

Future Works: Jenkins Plugin

RRE Maven plugin already produces the evaluation
data in a machine-readable format (JSON) which
can be consumed by another component.

The Maven RRE Report plugin or the RRE Server
are just two examples of such consumers.

RRE can be already executed in a Jenkins CI build
cycle (using the Maven plugin).

By means of a dedicated Jenkins plugin, the
evaluation data could be graphically displayed in the
Jenkins dashboard. It could be even used for
blocking builds which produce bad evaluation results.

Jenkins Plugin

Future Works: Building the input

The main input for RRE is the Ratings file, in JSON format.
Writing a comprehensive JSON to detail the ratings sets for your Search ecosystem can be expensive!

1. Explicit feedback from users judgements
2. An intuitive UI allow judges to run queries, see documents and rate them
3. Relevance label is explicitly assigned by domain experts 1. Implicit feedback from users interactions (Clicks, Sales …)

2. Log to disk / internal Solr instance for analytics
3. Estimate <q,d> relevance label based on Click Through Rate, Sales Rate

Users Interactions Logger
Judgement Collector UI

Quality
Metrics

Ratings
Set

Explicit
Feedback RRE
Implicit

Feedback

Judgements Collector

Interactions Logger

Future Works: Learning To Rank

Once you collected the ratings, could we use them to actively improve the quality metrics ? 

“Learning to rank is the application of machine
learning, typically supervised, semi-supervised or
reinforcement learning, in the construction of
ranking models for information retrieval
systems.” Wikipedia

Learning To Rank Users Interactions
Logger

Judgement Collector  
UI

Interactions

Training

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Ranking_function
https://en.wikipedia.org/wiki/Information_retrieval

Future Works: Training Set Building

Creating a Learning To Rank Training Set from the collected interactions is not going to be trivial.
It normally requires ad hoc data manipulation depending on the use case… 
… but some steps could be automated and make available for a generic configurable approach
 

▪ Null feature sanitisation

▪ Query Id calculation

▪ Query document feature generation

▪ Single/Multi valued categorical feature encoding

Configuration

1. Ad Hoc category, Artificial values, keep NaN  
-> depends of Training Library to use 

2. Optional Query Level features to be hashed as
QueryId  

3. Intersect related query and document level
categorical features to generate Ordinal query-
document features 

4. Label Encoding ? One Hot Encoding? Binary
Encoding? [1]

 Dummy Variable Trap

[1] https://www.datacamp.com/community/tutorials/categorical-data

https://www.datacamp.com/community/tutorials/categorical-data

Future Works: Training Set Building

What about the relevance label for each training vector ? 
Can we estimate it from the interactions collected ?
 

▪ Interaction Type Counts 

▪ Click Through Rate/Sales Through Rate calculation 

▪ Relevance label normalisation

Configuration

1. Impressions? Clicks? Bookmarks? Add To
Charts? Sales? 

2. Define the objective: Clicks/Impressions ? 
Sales/Impressions? 

3. Relevance Label : 0…4 

Future Works: Learning To Rank Solr Configs

Can the features.json configuration generation be automated?

The features.json is a configuration file necessary
for Solr Learning To Rank
extension to work.
It is a configuration file that describes how the
features that were used at
training time for the model can be extracted at
query time.
This file is coupled both with the training set
features and the query time
features.

Learning To Rank - Solr features.json Users Interactions
Logger

Training Set Builder

Configuration
Features.json

➢ Search Quality Evaluation

➢ Rated Ranking Evaluator

➢ Future Works

✓ Q&A

Search Quality Evaluation
Tools and techniques

Alessandro Benedetti - Software Engineer
Andrea Gazzarini - Software Engineer
2nd October 2018

Thank you!

