
From User Actions to Better Rankings

Challenges of using search quality feedback for LTR

Agnes van Belle

Amsterdam, the Netherlands

Search at Textkernel

● Core product: semantic searching/matching solution
○ For HR companies
○ Searching/match between vacancies and CVs
○ (Customized) SAAS & local installation
○ CVs come from businesses

Search at CareerBuilder

● Textkernel merged in 2015 with CareerBuilder
○ Vacancy search for consumers
○ CV search for businesses (SAAS)

■ Single source of millions of CVs, from people that applied to
vacancies on their website

● “Education will be a less important match, the more years of
experience a candidate has”

● “We should weight location matches less when finding
candidates in IT”

Intuition of LTR in HR field

Learning to rank

● Learn a parameterized ranking model
● That optimizes ranking order

○ Per customer

● We implemented an integration for this in both
Textkernels and CareerBuilders search products

returned
documents

top K
documents

LTR integration
query

result
splitter

feature
extraction

index

ranking
model

top K
documents
reranked

rest of
documents

LTR model training: necessary input
● Machine Learning from user feedback
● Input: set of {query, lists of assessed documents}

○ Each document has a relevance indication from feedback

implicit
feedback

explicit
feedback

Feedback types: cost/benefit intuitions

● Explicit feedback
○ Reliable
○ Time-consuming

● Implicit feedback
○ Noisy
○ Comes cheap in huge quantities

Two projects

● Textkernel search product customer
○ Explicit feedback

■ Single customer
■ They have lots of users (recruiters)

● CareerBuilder resume search
○ Implicit feedback

■ Was already action logging implemented

TK search product customer

● Dutch-based recruitment and human resources company
● In worldwide top 10 of global staffing firms (revenue)
● Few hundred thousand candidates in the Netherlands
● Their recruiters use our system to find candidates

Vacancy-to-CV search system

Auto-generated query from vacancy

User feedback

● Explicit user feedback given in interface
○ Thumb up for a good result, thumb down for a bad one

● Guidelines:
○ Assess vacancies where they noticed

■ at least one relevant candidate and one irrelevant candidate
○ Assess ~ first page of results
○ Assess 1 or 2 vacancies per week

Original Methodology

1. Collect explicit feedback given in interface
2. Generate features for these queries and result-documents
3. Learn reranker model

Two representativeness assumptions

● Query is fully representative of true information need

○ all the recruiter’s main needs are in the query

● Explicit assessment is representative of true judgement

○ a positive result means they used a thumb up

○ a negative result means they used a thumb down

■ they won’t just see a negative result and do nothing

Query is underspecified

Criterium # queries # assessments

All 229 (100%) 1514

Matching multiple field criterium 169 (74%) 1092

Many single-field queries, like:
● city:Utrecht+25km
● fulltext:"civil affairs"

Assessments are underspecified

Criterium # queries # assessments

All 229 (100%) 1514

Matching multiple assessments criterium 59 (25%) 378

For about 75% assessed queries:

● 70% only had thumb up
● 30% only had thumb down

Query & assessment underspecification

Criterium # queries # assessments

All 229 (100%) 1514

Matching multiple assessments and
multiple fields criterium

38 (17%) 255

Solving query underspecification

● Remove queries without multiple fields
○ No queries with e.g. only a location field

Solving assessment underspecification

● Many times users assessed, they skipped documents
● Assume explicit-assessment skips indicate implicit feedback

Original Pos Relevance

1 N/A

2 1

3 1

4 N/A

5 1

6 1

7 1

8 N/A

irrelevant?

irrelevant?

Solving assessment underspecification

1. Collect explicit feedback given in interface
2. Generate features for these queries and result-documents
3. Also get all un-assessed documents from the logs, and assume

these are (semi-)irrelevant
4. Learn reranker

Implicit feedback heuristics

Explicit-assessment skip
documents labeling heuristic

Additional query set filtering NDCG
change

None Without implicit judgements,
>=1 explicit assessment

1%

Marked irrelevant >=1 positive and >=1 negative assessment 4%

Marked irrelevant >=1 positive and >=1 negative assessment,
plus >=3 total assessments

6%

Above the last user assessment: marked
irrelevant, below: slightly irrelevant

>=1 positive and >=1 negative assessment,
plus >=3 total assessments

6%

Above the last user assessment: marked
irrelevant, below: dropped

>=1 positive and >=1 negative assessment,
plus >=3 total assessments

6%

Solving assessment underspecification
● Before: 17% suitable

● After: 31% suitable (+14%) (71 queries)

1) Tax, N., Bockting, S., Hiemstra, D.: A cross-benchmark comparison of 87 learning
to rank methods. Information processing & management 51(6), 757-772 (2015)

Reranker algorithm

● LambdaMART
○ state-of-the art LTR algorithm1

○ list-wise optimization
○ gradient boosted regression trees

● Least-squares linear regression
○ baseline comparison approach
○ point-wise optimization

Reranker features

● Vacancy features

○ e.g. desired years of experience or job class

● Candidate features

○ e.g. years of experience, job class, number skills

● Matching features

○ e.g. search engine matching score for jobtitle field

LambdaMART Linear

Baseline Model Baseline Model

NDCG@10 0.33 .47 (+42%) 0.35 0.41 (+18%)

Precision@10 0.23 .32 (+39%) 0.18 0.20 (+7%)

Average number of
thumbs up docs in top 10

2.3 3.2 (+0.9) 1.8 2.0 (+0.2)

Best learned reranker

Note that actual search performance is much higher because not explicitly assessed
documents are considered irrelevant

Reranker minus baseline score difference plot (NDCG top 10)

-.4 -.2 0 +.2 +.4 +.6 +.8

-.4 -.2 0 +.2 +.4 +.6 +.8

Reranker vs baseline score distribution plot (NDCG top 10)

Deeper look

● Query underspecification problem seems not solved
○ The learned models are mostly based on

document-related features, not so much on
query-related ones

○ Qualitative look revealed queries lack requirements

Examples

“burgerzaken”
 (civil affairs)

Original Reranked

Original Pos Relevance Original Pos Relevance

0 1 0 1

1 1 17 1

2 1 1 1

3 N/A 6 1

4 1 5 1

5 1 16 1

6 1 13 1

7 N/A 2 1

8 N/A 7 N/A

9 1 12 N/A

Precision = 0.7 Precision = 0.8

NDCG@10 = 0.77 NDCG@10 = 0.87

Thumb-up documents:
● 9/11 are in Rotterdam, 2/11 in Amsterdam

N/A documents:
● 3/4 are from small towns (non-Randstad)
● 1 is from Amsterdam, but still studying, and her

experience is in a small town

Lessons learnt explicit feedback

● Two types of underspecification problems:
○ Explicit assessments underspecify order preference

■ Can be solved
● almost doubled usable data using implicit signals

○ Query underspecifies vacancy
■ Harder to solve with small dataset
■ Serious problem in HR field (discrimination)

CareerBuilder Resume Search

● 125 million candidate profiles
● Two search indexes:

○ CB Internal Resume Database
○ Social profiles

● Semantic search

Semantic
Search

Four Actions

Get

Download

Save

Forward

Action analysis: frequency

 no
action

Get Download ForwardSave Get Download ForwardSave

● Most users don’t interact much with the system
● Most just “click” (“Get”) to view a candidate’s details

How to interpret actions?

● Check calibration with human-annotated set
○ 200 queries

■ Each query 10 documents

● Relevance scale used by annotators:
○ 0 (bad),
○ 1 (ok),
○ 2 (good)

Learned reranker on human labeled set

● Improvement using 5-fold cross-validation:
○ 5-10% NDCG@10

Action correlation with human labels

● “Get”: many irrelevant results
● “Save”: unclear relation
● “Download/Forward”: reliable

How to interpret actions?

● “Get”: many irrelevant results
○ Two subgroups of users:

■ users that take a closer look on “odd” results
■ users that click on good results

● “Save”: unclear relation
○ You can save results as relevant for a different query

● “Download/Forward”: reliable
○ “Forward” is an email, can be to yourself

Action usage

● How to deal with position bias?
● What’s the last document to attach relevancy to?

Rank Clicked Examined

1 x y

2 y

3 x y

4 y

5 x y

6 ?

Position bias: click models

● Model probability of examination and attractiveness based on users

search behavior.
● Factor out position
● Position-Based Model:

Ed Ad

Cd

γr(d) αd,

q

examination
probability
per rank r

attractiveness
of document d
for query q

Position bias: click models

Ed Ad

Cd

γr(d) αd,

q

examination
probability
per rank r

attractiveness
of document d
for query q

● Model probability of examination and attractiveness based on users

search behavior.
● Factor out position
● Position-Based Model:

Position bias: click models

● Click model (PBM) succeeded in removing position bias

Position bias: click models

● Click model (PBM) however did not boost score
● Possible causes:

○ Few repeated queries
○ Sparse clicks

Last document to attach relevancy to

● Cut-off after last click
○ Makes bottom document always relevant
○ Results in reranker “learning” to put

bottom documents at top

● Top-N results
○ Choose top 20
○ (Avg. position last click: 17)

Rank Clicked Examined

1 x y

2 y

3 x y

4 y

5 x y

6 ?

Query filtering

● Using only queries with at least ‘fulltext’ and ‘location’
○ Queries without that are underspecified and the clicks will be noisy
○ Or the user will probably refine
○ These wo fields turned out to be most important

● Using queries that were executed multiple times
○ If multiple people issued a query, it is likely of higher quality
○ Aggregate the signal so they become more reliable

Query/action filtering

● Original data:
○ 1 month
○ 2.1M query-doc pairs

● Filter on queries with > 1 occurrence:
○ 2.3K unique queries

● Filter on queries with
○ ‘fulltext’ and ‘location’
○ >=3 Download/Forward actions

■ 500-600 queries

Results

● About 3% improvement on that data set
○ using 5-fold cross-validation

● About 2% deterioration on human assessed set

Results

Results

Summary implicit feedback

● Query underspecification can be solved by filtering
○ Because there are still enough usable queries left

● Assessment ‘underspecification’ becomes ‘ambiguity’
○ Problems with:

■ different subgroups of user behaviour
● click on odd or relevant results

■ ambiguity of how people use UI
■ position bias (?)

Summary / conclusion

● Explicit feedback
○ Few data
○ Good improvements
○ Too small set to deploy

● Implicit feedback
○ Much data
○ Small improvements
○ Safe to deploy

Any questions?
Thanks!

contact: vanbelle@textkernel.nl
join us: textkernel.careers

mailto:vanbelle@textkernel.nl

